Step 1: Understanding the given function
We have:
\[
y = |\sin x - \cos x|.
\]
To simplify this expression, we use the transformation:
\[
\sin x - \cos x = \sqrt{2} \sin \left( x - \frac{\pi}{4} \right).
\]
Thus, the function can be rewritten as:
\[
y = \left| \sqrt{2} \sin \left( x - \frac{\pi}{4} \right) \right|.
\]
Step 2: Finding points where \( \sin(x - \frac{\pi}{4}) = 0 \)
\[
\sin(x - \frac{\pi}{4}) = 0 \quad \Rightarrow \quad x - \frac{\pi}{4} = 0.
\]
Solving for \( x \):
\[
x = \frac{\pi}{4}.
\]
Step 3: Evaluating the area integral
The function changes sign at \( x = \frac{\pi}{4} \). Therefore, we split the integral:
\[
A = \int_0^{\pi/4} (\cos x - \sin x) \, dx + \int_{\pi/4}^{\pi/2} (\sin x - \cos x) \, dx.
\]
Using standard integration:
\[
\int (\cos x - \sin x) dx = \sin x + \cos x.
\]
Evaluating in \( [0, \pi/4] \):
\[
\left[ \sin x + \cos x \right]_0^{\pi/4} = (\sin \frac{\pi}{4} + \cos \frac{\pi}{4}) - (0 + 1).
\]
\[
= (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}) - 1 = \sqrt{2} - 1.
\]
Similarly, for \( [\pi/4, \pi/2] \):
\[
\left[ \sin x + \cos x \right]_{\pi/4}^{\pi/2} = (1 + 0) - (\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}).
\]
\[
= 1 - \sqrt{2} + 1.
\]
Adding both areas:
\[
A = 2 (\sqrt{2} - 1).
\]
Step 4: Conclusion
Thus, the correct answer is:
\[
2(\sqrt{2} - 1).
\]