We are given two planes:
Plane 1: \( x + y + z = 1 \)
Plane 2: \( 2x + 3y - z + 4 = 0 \Rightarrow 2x + 3y - z = -4 \)
Let the equation of a plane through their intersection be:
\[
\Pi: (x + y + z - 1) + \lambda(2x + 3y - z + 4) = 0
\]
Expand:
\[
x + y + z - 1 + \lambda(2x + 3y - z + 4) = 0
\Rightarrow x + y + z - 1 + 2\lambda x + 3\lambda y - \lambda z + 4\lambda = 0
\]
Group like terms:
\[
(1 + 2\lambda)x + (1 + 3\lambda)y + (1 - \lambda)z + (4\lambda - 1) = 0 \tag{1}
\]
This is the general form of the plane through the line of intersection.
We now require this plane to be parallel to the x-axis.
So the direction vector \( \vec{d} = (1, 0, 0) \) must lie on the plane.
That means the normal vector of the plane should be orthogonal to \( (1, 0, 0) \)
From (1), the normal vector is:
\[
\vec{n} = ((1 + 2\lambda),\ (1 + 3\lambda),\ (1 - \lambda))
\]
For the plane to be parallel to the x-axis, we must have:
\[
\vec{n} \cdot (1, 0, 0) = 0 \Rightarrow 1 + 2\lambda = 0 \Rightarrow \lambda = -\frac{1}{2}
\]
Substitute \( \lambda = -\frac{1}{2} \) into (1):
- Coefficient of \( x \): \( 1 + 2(-\frac{1}{2}) = 0 \)
- Coefficient of \( y \): \( 1 + 3(-\frac{1}{2}) = 1 - \frac{3}{2} = -\frac{1}{2} \)
- Coefficient of \( z \): \( 1 - (-\frac{1}{2}) = \frac{3}{2} \)
- Constant term: \( 4(-\frac{1}{2}) - 1 = -2 - 1 = -3 \)
So the equation becomes:
\[
0x - \frac{1}{2}y + \frac{3}{2}z - 3 = 0
\Rightarrow -y + 3z - 6 = 0 \Rightarrow \boxed{y - 3z + 6 = 0}
\]
Final Answer:
\[
\boxed{y - 3z + 6 = 0}
\]