Given the equation:
\[
2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right)
\]
Let \( y = \cos^{-1} x \), then \( \cos y = x \).
Thus, we have:
\[
2y = \sin^{-1} \left( 2 \sqrt{1 - \cos^2 y} \right)
\]
Simplifying this equation gives:
\[
2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right)
\]
Now, the equation holds valid for the values of \( x \) such that:
\[
0 \leq \cos^{-1} x \leq \frac{\pi}{2}
\]
This corresponds to the interval \( \frac{1}{\sqrt{2}} \leq x \leq 1 \).