We are given that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
We use the identity:
\[
|\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2
\]
Substituting the given values:
\[
|\vec{a} \times \vec{b}|^2 = (10^2)(2^2) - (12^2)
\]
\[
= (100)(4) - 144 = 400 - 144 = 256
\]
Thus:
\[
|\vec{a} \times \vec{b}| = \sqrt{256} = 16
\]
Therefore, the value of \( |\vec{a} \times \vec{b}| \) is \( 16 \).