Given Information:
Bond energies:
Reaction for Formation of Ethane from Ethylene:
The reaction can be represented as:
\[ \text{C}_2\text{H}_4(g) + \text{H}_2(g) \rightarrow \text{C}_2\text{H}_6(g) \]
Bond Energy Calculations:
Breaking Bonds:
Forming Bonds:
Enthalpy Change (\( \Delta H \)):
\[ \Delta H = \text{Energy required to break bonds} - \text{Energy released in forming bonds} \]
\[ \Delta H = 1175 - 1050 = 125 \, \text{kJ} \]
Conclusion:
The enthalpy of formation of ethane from ethylene by addition of hydrogen is \( 125 \, \text{kJ} \).
A perfect gas (0.1 mol) having \( \bar{C}_V = 1.50 \) R (independent of temperature) undergoes the above transformation from point 1 to point 4. If each step is reversible, the total work done (w) while going from point 1 to point 4 is ____ J (nearest integer) [Given : R = 0.082 L atm K\(^{-1}\)]
A sample of n-octane (1.14 g) was completely burnt in excess of oxygen in a bomb calorimeter, whose heat capacity is 5 kJ K\(^{-1}\). As a result of combustion, the temperature of the calorimeter increased by 5 K. The magnitude of the heat of combustion at constant volume is ___
Match List-I with List-II: List-I