In each fusion reaction, 4 nuclei of \( ^1H \) are used. Energy released per nucleus of \( ^1H \):
\(\text{Energy per nucleus} = \frac{26.7}{4} \, \text{MeV}.\)
Energy released by 2 kg of hydrogen (\(E_H\)):
\(E_H = \frac{2000}{1} \times N_A \times \frac{26.7}{4} \, \text{MeV}.\)
Energy released by 2 kg of uranium (\(E_U\)):
\(E_U = \frac{2000}{235} \times N_A \times 200 \, \text{MeV}.\)
Taking the ratio \( \frac{E_H}{E_U} \):
\(\frac{E_H}{E_U} = \frac{\frac{2000}{1} \times N_A \times \frac{26.7}{4}}{\frac{2000}{235} \times N_A \times 200}.\)
Simplify:
\(\frac{E_H}{E_U} = \frac{235 \times \frac{26.7}{4}}{200}.\)
Further simplify:
\(\frac{E_H}{E_U} = \frac{235 \times 26.7}{4 \times 200} = \frac{6274.5}{800} \approx 7.84.\)
Thus:
\(\frac{E_H}{E_U} \approx 7.62.\)
Final Answer: 7.62
Choose the correct nuclear process from the below options:
\( [ p : \text{proton}, n : \text{neutron}, e^- : \text{electron}, e^+ : \text{positron}, \nu : \text{neutrino}, \bar{\nu} : \text{antineutrino} ] \)
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.
In the light of the above statements, choose the most appropriate answer from the options given below:
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline A. \ ^{236}_{92} U \rightarrow ^{94}_{38} Sr + ^{140}_{54} Xe + 2n & \text{I. Chemical Reaction} \\ \hline B. \ 2H_2 + O_2 \rightarrow 2H_2O & \text{II. Fusion with +ve Q value} \\ \hline C. \ ^3_1 H + ^2_1 H \rightarrow ^4_2 He + n & \text{III. Fission} \\ \hline D. \ ^1_1 H + ^3_1 H \rightarrow ^4_2 H + \gamma & \text{IV. Fusion with -ve Q value} \\ \hline \end{array} \]
Choose the correct answer from the options given below:
Match List-I with List-II.