Given: - Binding energy per nucleon of \( \text{H}_2^1 \) = 1.1 MeV
- Binding energy per nucleon of \( \text{He}_4^2 \) = 7.0 MeV
The energy released \( Q \) is the difference between the binding energy of the reactants and products: \[ E_B = \text{BE}_{\text{reactant}} - \text{BE}_{\text{product}} \] \[ E_B = 1.1 \times 2 + 1.1 \times 2 - 7 \times 4 = 23.6 \, \text{MeV} \] Thus, the energy released is: \[ Q = 23.6 \, \text{MeV} \]
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.
In the light of the above statements, choose the most appropriate answer from the options given below:
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline A. \ ^{236}_{92} U \rightarrow ^{94}_{38} Sr + ^{140}_{54} Xe + 2n & \text{I. Chemical Reaction} \\ \hline B. \ 2H_2 + O_2 \rightarrow 2H_2O & \text{II. Fusion with +ve Q value} \\ \hline C. \ ^3_1 H + ^2_1 H \rightarrow ^4_2 He + n & \text{III. Fission} \\ \hline D. \ ^1_1 H + ^3_1 H \rightarrow ^4_2 H + \gamma & \text{IV. Fusion with -ve Q value} \\ \hline \end{array} \]
Choose the correct answer from the options given below:
Match the following types of nuclei with examples shown:
Consider the following molecules:
The order of rate of hydrolysis is: