Given: - Binding energy per nucleon of \( \text{H}_2^1 \) = 1.1 MeV
- Binding energy per nucleon of \( \text{He}_4^2 \) = 7.0 MeV
The energy released \( Q \) is the difference between the binding energy of the reactants and products: \[ E_B = \text{BE}_{\text{reactant}} - \text{BE}_{\text{product}} \] \[ E_B = 1.1 \times 2 + 1.1 \times 2 - 7 \times 4 = 23.6 \, \text{MeV} \] Thus, the energy released is: \[ Q = 23.6 \, \text{MeV} \]
Match the LIST-I with LIST-II
LIST-I (Type of decay in Radioactivity) | LIST-II (Reason for stability) | ||
---|---|---|---|
A. | Alpha decay | III. | Nucleus is mostly heavier than Pb (Z=82) |
B. | Beta negative decay | IV. | Nucleus has too many neutrons relative to the number of protons |
C. | Gamma decay | I. | Nucleus has excess energy in an excited state |
D. | Positron Emission | II. | Nucleus has too many protons relative to the number of neutrons |
Choose the correct answer from the options given below:
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.
In the light of the above statements, choose the most appropriate answer from the options given below:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).