Let's analyze each statement:
A. The terminal velocity $ V $ is given by:
$$ V = \frac{2}{9} \frac{r^2 (\rho_s - \rho_l)g}{\eta} $$
where $ r $ is the radius of the ball, $ \rho_s $ is the density of the ball, $ \rho_l $ is the density of the liquid, $ g $ is the acceleration due to gravity, and $ \eta $ is the viscosity of the liquid.
Since $ V \propto r^2 $, the graph between terminal velocity $ V $ and $ r $ (or $ R $) will be a parabola.
So, statement A is correct.
B. The terminal velocity depends on the radius (or diameter) of the ball. Different diameter balls will have different terminal velocities for a given liquid.
So, statement B is incorrect.
C. Measurement of terminal velocity is dependent on the temperature. The viscosity of the liquid is temperature-dependent. As temperature increases, the viscosity of most liquids decreases, affecting the terminal velocity.
So, statement C is correct.
D. This experiment can be utilized to assess the density of a given liquid. By measuring the terminal velocity of a ball with known density and radius, and knowing the viscosity, we can solve for the density of the liquid in the equation for terminal velocity.
So, statement D is correct.
E. If balls are dropped with some initial speed, the value of $ \eta $ will not change. The viscosity is a property of the liquid and does not depend on the initial speed of the ball. Although the ball takes a longer/shorter amount of time depending on whether it is thrown or released, this does not affect the viscosity.
So, statement E is incorrect.
Conclusion:
The correct statements are A, C, and D.
Final Answer:
The final answer is $ (2)\ \text{A, C and D only} $.
A flexible chain of mass $m$ is hanging as shown. Find tension at the lowest point. 

Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to