The energy density of an EM wave is proportional to the square of the electric f ield. Squaring a sinusoidal function doubles the frequency.
The energy density of the wave is given by:
\( \text{Energy density} = \frac{1}{2} \varepsilon_0 E_{\text{net}}^2 \)
Substitute \( E_{\text{net}} = E_0 \sin(\omega t - kx) \):
\[ \text{Energy density} = \frac{1}{2} \varepsilon_0 E_0^2 \sin^2(\omega t - kx) \]
Using the trigonometric identity \( \sin^2 x = \frac{1}{2}(1 - \cos 2x) \):
\[ \sin^2(\omega t - kx) = \frac{1}{2}(1 - \cos(2\omega t - 2kx)) \]
Substitute this into the energy density formula:
\[ \text{Energy density} = \frac{1}{2} \varepsilon_0 E_0^2 \cdot \frac{1}{2}(1 - \cos(2\omega t - 2kx)) \]
Simplify the expression:
\[ \text{Energy density} = \frac{1}{4} \varepsilon_0 E_0^2 (1 - \cos(2\omega t - 2kx)) \]
The energy density of the wave is:
\( \frac{1}{4} \varepsilon_0 E_0^2 (1 - \cos(2\omega t - 2kx)) \)
Match List-I with List-II: List-I
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)