The energy density of an EM wave is proportional to the square of the electric f ield. Squaring a sinusoidal function doubles the frequency.
The energy density of the wave is given by:
\( \text{Energy density} = \frac{1}{2} \varepsilon_0 E_{\text{net}}^2 \)
Substitute \( E_{\text{net}} = E_0 \sin(\omega t - kx) \):
\[ \text{Energy density} = \frac{1}{2} \varepsilon_0 E_0^2 \sin^2(\omega t - kx) \]
Using the trigonometric identity \( \sin^2 x = \frac{1}{2}(1 - \cos 2x) \):
\[ \sin^2(\omega t - kx) = \frac{1}{2}(1 - \cos(2\omega t - 2kx)) \]
Substitute this into the energy density formula:
\[ \text{Energy density} = \frac{1}{2} \varepsilon_0 E_0^2 \cdot \frac{1}{2}(1 - \cos(2\omega t - 2kx)) \]
Simplify the expression:
\[ \text{Energy density} = \frac{1}{4} \varepsilon_0 E_0^2 (1 - \cos(2\omega t - 2kx)) \]
The energy density of the wave is:
\( \frac{1}{4} \varepsilon_0 E_0^2 (1 - \cos(2\omega t - 2kx)) \)
Using a variable frequency ac voltage source the maximum current measured in the given LCR circuit is 50 mA for V = 5 sin (100t) The values of L and R are shown in the figure. The capacitance of the capacitor (C) used is_______ µF.

Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 