Question:

The energy of an electromagnetic wave contained in a small volume oscillates with

Show Hint

The energy density of an EM wave is proportional to the square of the electric f ield. Squaring a sinusoidal function doubles the frequency.

Updated On: Mar 19, 2025
  • zero frequency
  • half the frequency of the wave
  • double the frequency of the wave
  • the frequency of the wave
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Formula for Energy Density 

The energy density of the wave is given by:

\( \text{Energy density} = \frac{1}{2} \varepsilon_0 E_{\text{net}}^2 \)

Substitute \( E_{\text{net}} = E_0 \sin(\omega t - kx) \):

\[ \text{Energy density} = \frac{1}{2} \varepsilon_0 E_0^2 \sin^2(\omega t - kx) \]

Step 2: Use the Trigonometric Identity

Using the trigonometric identity \( \sin^2 x = \frac{1}{2}(1 - \cos 2x) \):

\[ \sin^2(\omega t - kx) = \frac{1}{2}(1 - \cos(2\omega t - 2kx)) \]

Substitute this into the energy density formula:

\[ \text{Energy density} = \frac{1}{2} \varepsilon_0 E_0^2 \cdot \frac{1}{2}(1 - \cos(2\omega t - 2kx)) \]

Simplify the expression:

\[ \text{Energy density} = \frac{1}{4} \varepsilon_0 E_0^2 (1 - \cos(2\omega t - 2kx)) \]

Final Answer:

The energy density of the wave is:

\( \frac{1}{4} \varepsilon_0 E_0^2 (1 - \cos(2\omega t - 2kx)) \)

Was this answer helpful?
0
0