Step 1: Find the velocity equations for each particle.
For simple harmonic motion, if displacement is \( y = A \sin(\omega t + \phi) \), then velocity is \( v = \frac{dy}{dt} = A\omega \cos(\omega t + \phi) \).
For particle 1:
\( y_1 = 0.1\sin\left(100\pi t + \frac{\pi}{3}\right) \)
Here, \( A_1 = 0.1 \), \( \omega_1 = 100\pi \), and \( \phi_1 = \frac{\pi}{3} \).
The velocity \( v_1 = \frac{dy_1}{dt} = 0.1 \cdot (100\pi) \cos\left(100\pi t + \frac{\pi}{3}\right) \)
\( v_1 = 10\pi \cos\left(100\pi t + \frac{\pi}{3}\right) \).
For particle 2:
\( y_2 = 0.1\cos(\pi t) \)
We can rewrite \( \cos(\theta) \) as \( \sin\left(\theta + \frac{\pi}{2}\right) \).
So, \( y_2 = 0.1\sin\left(\pi t + \frac{\pi}{2}\right) \).
Here, \( A_2 = 0.1 \), \( \omega_2 = \pi \), and \( \phi_2 = \frac{\pi}{2} \).
The velocity \( v_2 = \frac{dy_2}{dt} = 0.1 \cdot (\pi) \cos\left(\pi t + \frac{\pi}{2}\right) \)
\( v_2 = 0.1\pi \cos\left(\pi t + \frac{\pi}{2}\right) \).
Step 2: Determine the phase of each velocity at \( t = 0 \).
The general form of velocity for SHM is \( v = V_{max} \cos(\omega t + \Phi) \). The phase is \( (\omega t + \Phi) \).
For \( v_1 \), the phase is \( \Phi_1(t) = 100\pi t + \frac{\pi}{3} \).
At \( t=0 \), \( \Phi_1(0) = 100\pi (0) + \frac{\pi}{3} = \frac{\pi}{3} \).
For \( v_2 \), the phase is \( \Phi_2(t) = \pi t + \frac{\pi}{2} \).
At \( t=0 \), \( \Phi_2(0) = \pi (0) + \frac{\pi}{2} = \frac{\pi}{2} \).
Step 3: Calculate the phase difference between the velocities at \( t = 0 \).
The phase difference \( \Delta \Phi = |\Phi_1(0) - \Phi_2(0)| \).
\( \Delta \Phi = \left|\frac{\pi}{3} - \frac{\pi}{2}\right| \)
To subtract, find a common denominator (6):
\( \Delta \Phi = \left|\frac{2\pi}{6} - \frac{3\pi}{6}\right| \)
\( \Delta \Phi = \left|-\frac{\pi}{6}\right| \)
\( \Delta \Phi = \frac{\pi}{6} \).