The time period \( T \) of a mass-spring system is given by the formula:
\[
T = 2\pi \sqrt{\frac{m}{k}}
\]
Where:
- \( m \) is the mass,
- \( k \) is the spring constant.
Substituting the given values:
- \( m = 0.5 \, \text{kg} \),
- \( k = 200 \, \text{N/m} \).
We get:
\[
T = 2\pi \sqrt{\frac{0.5}{200}} = 2\pi \sqrt{0.0025} = 2\pi \times 0.05 \approx 0.25 \, \text{s}
\]
Thus, the time period of oscillation is 0.25 seconds.