The question asks to identify the element that does not belong to the same period as the others in the modern periodic table. Let's analyze the given elements one by one:
From this analysis, we observe:
Therefore, the element only belonging to the 5th period and differing from the rest is Palladium (Pd).
Conclusion: The element that does not belong to the same period as the remaining elements is Palladium, which is the correct answer.
In the modern periodic table, elements are arranged in periods (rows) based on their atomic numbers. To determine which element does not belong to the same period as the others, we need to identify the periods of the given elements:
The elements Iridium, Osmium, and Platinum are all in period 6. Palladium, however, is in period 5, making it the element that does not belong to the same period as the others. Therefore, Palladium is the correct answer.
Which of the following Statements are NOT true about the periodic table?
A. The properties of elements are a function of atomic weights.
B. The properties of elements are a function of atomic numbers.
C. Elements having similar outer electronic configuration are arranged in the same period.
D. An element's location reflects the quantum numbers of the last filled orbital.
E. The number of elements in a period is the same as the number of atomic orbitals available in the energy level that is being filled.
Match List-I with List-II:
Match the LIST-I with LIST-II.
| LIST-I | LIST-II | ||
| A. | Pnicogen (group 15) | I. | Ts |
| B. | Chalcogen (group 16) | II. | Og |
| C. | Halogen (group 17) | III. | Lv |
| D. | Noble gas (group 18) | IV. | Mc |
Choose the correct answer from the options given below :
For the AC circuit shown in the figure, $ R = 100 \, \text{k}\Omega $ and $ C = 100 \, \text{pF} $, and the phase difference between $ V_{\text{in}} $ and $ (V_B - V_A) $ is 90°. The input signal frequency is $ 10^x $ rad/sec, where $ x $ is:
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?
