Step 1: Use the Bohr model energy formula for hydrogen-like species
\[
E_n = -13.6 \, \text{eV} \times \frac{Z^2}{n^2}
\]
Step 2: Given energy of 2nd orbit of hydrogen
For hydrogen (\(Z=1\)), \(n=2\):
\[
E_2 = -13.6 \times \frac{1^2}{2^2} = -3.4 \, \text{eV}
\]
Step 3: Use same \(Z^2/n^2\) ratio for He\(^+\)
For He\(^+\) (\(Z=2\)), \(n=4\):
\[
E_4 = -13.6 \times \frac{2^2}{4^2} = -13.6 \times \frac{4}{16} = -13.6 \times \frac{1}{4} = -3.4 \, \text{eV}
\]
Step 4: Final Answer
\[
\boxed{-3.4 \, \text{eV}}
\]