Step 1: Bohr Radius Formula
The radius of the \( n \)th orbit for a hydrogen-like atom is given by:
\[
r_n = \frac{n^2 h^2 \epsilon_0}{\pi m e^2 Z}
\]
or simplified as:
\[
r_n = \frac{n^2 r_0}{Z}
\]
where:
- \( r_0 \approx 53 \) pm (Bohr radius),
- \( Z \) is the atomic number,
- \( n \) is the principal quantum number.
Step 2: Computing \( R_1 \) for \( He^+ \)
For \( He^+ \), \( Z = 2 \), \( n = 4 \):
\[
R_1 = \frac{4^2 \times 53}{2}
\]
\[
= \frac{16 \times 53}{2}
\]
\[
= \frac{848}{2} = 424 \text{ pm}
\]
Step 3: Computing \( R_2 \) for \( Li^{2+} \)
For \( Li^{2+} \), \( Z = 3 \), \( n = 3 \):
\[
R_2 = \frac{3^2 \times 53}{3}
\]
\[
= \frac{9 \times 53}{3}
\]
\[
= \frac{477}{3} = 159.5 \text{ pm}
\]
Step 4: Computing Difference \( R_1 - R_2 \)
\[
R_1 - R_2 = 424 - 159.5 = 264.5 \text{ pm}
\]
Conclusion
Thus, the correct answer is:
\[
264.50 \text{ pm}
\]