The energy density in an electromagnetic wave is given by the formula:
\[
u = \frac{1}{2} \epsilon_0 E_0^2
\]
Where \( E_0 \) is the peak electric field. Substituting the given values:
\[
u = \frac{1}{2} \times 8.85 \times 10^{-12} \times (20)^2 = 8.85 \times 10^{-13} \, \text{J/m}^3
\]
The total energy contained in a volume \( V = 5 \times 10^4 \, \text{m}^3 \) is:
\[
\text{Energy} = u \times V = 8.85 \times 10^{-13} \times 5 \times 10^4 = 8.85 \times 10^{-13} \, \text{J}
\]
Thus, the energy is \( 8.85 \times 10^{-13} \, \text{J} \).