\[ I = I_0 + \beta t = 20 + 3t \]
The current \(I = \frac{dq}{dt}\), so we can write:
\[ dq = (20 + 3t) dt \]
\[ q = \int_{0}^{20} (20 + 3t) dt \]
Split the integral:
\[ q = \int_{0}^{20} 20 dt + \int_{0}^{20} 3t dt \]
\[ q = \left[20t\right]_{0}^{20} + \left[\frac{3t^2}{2}\right]_{0}^{20} \]
\[ = (20 \times 20) + \frac{3 \times 20^2}{2} \]
\[ = 400 + \frac{3 \times 400}{2} \]
\[ = 400 + 600 = 1000 \, C \]
So, the correct answer is: 1000 C