\[ I = I_0 + \beta t = 20 + 3t \]
The current \(I = \frac{dq}{dt}\), so we can write:
\[ dq = (20 + 3t) dt \]
\[ q = \int_{0}^{20} (20 + 3t) dt \]
Split the integral:
\[ q = \int_{0}^{20} 20 dt + \int_{0}^{20} 3t dt \]
\[ q = \left[20t\right]_{0}^{20} + \left[\frac{3t^2}{2}\right]_{0}^{20} \]
\[ = (20 \times 20) + \frac{3 \times 20^2}{2} \]
\[ = 400 + \frac{3 \times 400}{2} \]
\[ = 400 + 600 = 1000 \, C \]
So, the correct answer is: 1000 C
A battery of emf \( E \) and internal resistance \( r \) is connected to a rheostat. When a current of 2A is drawn from the battery, the potential difference across the rheostat is 5V. The potential difference becomes 4V when a current of 4A is drawn from the battery. Calculate the value of \( E \) and \( r \).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: