The magnetic field \( B \) is initially given by the equation:
Step 1: \( B = \frac{\mu_0 i}{2R} \times 4 \), which is the original magnetic field expression.
Step 2: For the new radius \( R' = 4R \), the new field \( B' \) is given by:
Step 3: Substitute \( R' \) into the magnetic field formula: \( B' = \frac{\mu_0 i}{2R'} = \frac{\mu_0 i}{8R} \).
Step 4: Now, calculate the ratio \( \frac{B'}{B} = \frac{1}{16} \), indicating that the new magnetic field is \( \frac{1}{16} \) of the original field.
Step 5: With this ratio, we conclude that the new magnetic field \( B' \) is \( 2T \).
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
Electromagnetic Induction is a current produced by the voltage production due to a changing magnetic field. This happens in one of the two conditions:-
The electromagnetic induction is mathematically represented as:-
e=N × d∅.dt
Where