Question:

The dimensions of a physical quantity ϵ0dΦEdt \epsilon_0 \frac{d\Phi_E}{dt} are similar to:

Show Hint

To find the dimensions of a given physical quantity, express each term in terms of its fundamental dimensions and simplify.
Updated On: Apr 7, 2025
  • Electric current
  • Electric field
  • Electric flux
  • Electric charge
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We are asked to find the dimensions of the quantity ϵ0dΦEdt \epsilon_0 \frac{d\Phi_E}{dt} . Here, ϵ0 \epsilon_0 is the permittivity of free space, and ΦE \Phi_E is the electric flux. - The dimensions of ϵ0 \epsilon_0 are given by: [ϵ0]=C2Nm2=A2s4kgm3 [\epsilon_0] = \frac{\text{C}^2}{\text{Nm}^2} = \frac{\text{A}^2 \cdot \text{s}^4}{\text{kg} \cdot \text{m}^3} - The dimensions of electric flux ΦE \Phi_E are: [ΦE]=Electric field×Area=[NC]×m2=kgm3As2 [\Phi_E] = \text{Electric field} \times \text{Area} = \left[\frac{\text{N}}{\text{C}}\right] \times \text{m}^2 = \frac{\text{kg} \cdot \text{m}^3}{\text{A} \cdot \text{s}^2} Now, we calculate the dimensions of dΦEdt \frac{d\Phi_E}{dt} : - The dimensions of dΦEdt \frac{d\Phi_E}{dt} are: [dΦEdt]=kgm3As3 \left[\frac{d\Phi_E}{dt}\right] = \frac{\text{kg} \cdot \text{m}^3}{\text{A} \cdot \text{s}^3} Thus, the dimensions of ϵ0dΦEdt \epsilon_0 \frac{d\Phi_E}{dt} are: [ϵ0dΦEdt]=[ϵ0][dΦEdt]=A2s4kgm3kgm3As3=A1s2s3=As2 [\epsilon_0 \frac{d\Phi_E}{dt}] = [\epsilon_0] \cdot \left[\frac{d\Phi_E}{dt}\right] = \frac{\text{A}^2 \cdot \text{s}^4}{\text{kg} \cdot \text{m}^3} \cdot \frac{\text{kg} \cdot \text{m}^3}{\text{A} \cdot \text{s}^3} = \frac{\text{A}^1 \cdot \text{s}^{-2}}{\text{s}^3} = \text{A} \cdot \text{s}^{-2} This corresponds to the dimension of electric current. Therefore, the correct answer is (1) Electric current.
Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions