The dimensions of a physical quantity \( \epsilon_0 \frac{d\Phi_E}{dt} \) are similar to [Symbols have their usual meanings]
Match List-I with List-II.
Match List-I with List-II.
List-I (A) Coefficient of viscosity (B) Intensity of wave (C) Pressure gradient (D) Compressibility | List-II (I) [ML-1T-1] (II) [MT-3] (III) [ML-2T-2] (IV) [M-1LT2] |
The equation for real gas is given by $ \left( P + \frac{a}{V^2} \right)(V - b) = RT $, where $ P $, $ V $, $ T $, and $ R $ are the pressure, volume, temperature and gas constant, respectively. The dimension of $ ab $ is equivalent to that of:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: