Step 1: Start from the radioactive decay law.
\[
N(t)=N_0\,e^{-\lambda t},
\]
where $\lambda$ is the decay constant. By definition of the half-life $t_{1/2}$,
\[
N(t_{1/2})=\frac{N_0}{2}.
\]
Step 2: Derive the half-life formula.
\[
\frac{N_0}{2}=N_0 e^{-\lambda t_{1/2}}
\ \Rightarrow\
\frac{1}{2}=e^{-\lambda t_{1/2}}
\ \Rightarrow\
\ln\!\left(\frac{1}{2}\right)=-\lambda t_{1/2}
\ \Rightarrow\
t_{1/2}=\frac{\ln 2}{\lambda}.
\]
Step 3: Insert the numerical value with correct units.
\[
\lambda = 1.21\times 10^{-4}\ \text{year}^{-1},\qquad
\ln 2 = 0.693147\ldots
\]
\[
t_{1/2}=\frac{0.693147}{1.21\times 10^{-4}}
= 5728.4876\ \text{years}.
\]
Step 4: Round to the requested precision and verify.
Nearest integer $\Rightarrow\ 5728$ years.
Check by back-substitution:
\[
e^{-\lambda t_{1/2}}=e^{-1.21\times 10^{-4}\times 5728.49}
=e^{-0.69315}\approx 0.5000,
\]
which matches the definition of half-life.
Alternative (log$_{10}$) route (optional).
Using $\ln 2 = 2.302585\times\log_{10}2$ with $\log_{10}2=0.30103$ also gives
\[
t_{1/2}=\frac{2.302585\times 0.30103}{1.21\times 10^{-4}}\approx 5.728\times 10^{3}\ \text{years}.
\]
Final Answer:\quad \[ \boxed{5728\ \text{years}} \]
The wavenumber of the first line (\(n_2 = 3\)) in the Balmer series of hydrogen is \( \overline{\nu}_1 \, \text{cm}^{-1} \). What is the wavenumber (in cm\(^{-1}\)) of the second line (\(n_2 = 4\)) in the Balmer series of He\(^{+}\)?
A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?