Step 1: Calculate the frequency of coinciding hands.
The hands of a clock coincide approximately every 65.45 minutes.
Step 2: Determine the time Rohit spent at the restaurant.
Given that the clock hands coincide approximately every 65.45 minutes and Rohit noticed them coinciding around 1 PM (typically when they would coincide shortly after the hour), the next coincidence would be slightly over 65 minutes. Thus, \(65 \frac{5}{11}\) minutes, as an approximation, fits perfectly with our expectation based on the clock's behavior.
While doing Bayesian inference, consider estimating the posterior distribution of the model parameter (m), given data (d). Assume that Prior and Likelihood are proportional to Gaussian functions given by \[ {Prior} \propto \exp(-0.5(m - 1)^2) \] \[ {Likelihood} \propto \exp(-0.5(m - 3)^2) \] 
The mean of the posterior distribution is (Answer in integer)
Consider a medium of uniform resistivity with a pair of source and sink electrodes separated by a distance \( L \), as shown in the figure. The fraction of the input current \( (I) \) that flows horizontally \( (I_x) \) across the median plane between depths \( z_1 = \frac{L}{2} \) and \( z_2 = \frac{L\sqrt{3}}{2} \), is given by \( \frac{I_x}{I} = \frac{L}{\pi} \int_{z_1}^{z_2} \frac{dz}{(L^2/4 + z^2)} \). The value of \( \frac{I_x}{I} \) is equal to 
Suppose a mountain at location A is in isostatic equilibrium with a column at location B, which is at sea-level, as shown in the figure. The height of the mountain is 4 km and the thickness of the crust at B is 1 km. Given that the densities of crust and mantle are 2700 kg/m\(^3\) and 3300 kg/m\(^3\), respectively, the thickness of the mountain root (r1) is km. (Answer in integer)