For hydrogen-like species, the wavenumber is given by:
\[
\overline{\nu} \propto Z^2 \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)
\]
Given:
- For H (\(Z=1\)), first line: \(n_2 = 3 \to n_1 = 2\), wavenumber = \( \overline{\nu}_1 \)
\[
\overline{\nu}_1 \propto 1^2 \left( \frac{1}{2^2} - \frac{1}{3^2} \right) = \left( \frac{1}{4} - \frac{1}{9} \right) = \frac{5}{36}
\]
- For He\(^{+}\) (\(Z=2\)), second line: \(n_2 = 4 \to n_1 = 2\)
\[
\overline{\nu}_2 \propto 2^2 \left( \frac{1}{2^2} - \frac{1}{4^2} \right) = 4 \left( \frac{1}{4} - \frac{1}{16} \right) = 4 \cdot \frac{3}{16} = \frac{12}{16} = \frac{3}{4}
\]
Now:
\[
\frac{\overline{\nu}_2}{\overline{\nu}_1} = \frac{(3/4)}{(5/36)} = \frac{3}{4} \cdot \frac{36}{5} = \frac{108}{20} = \frac{27}{5}
\Rightarrow \overline{\nu}_2 = \frac{27\overline{\nu}_1}{5}
\]