Step 1: Use the formula for radioactive decay.
\[
N = N_0 e^{-\lambda t}
\Rightarrow \frac{N}{N_0} = e^{-\lambda t}
\]
Step 2: Given \( N/N_0 = 0.77 \) and \( t = 12 \) min, solve for \( \lambda \):
\[
0.77 = e^{-\lambda \cdot 12}
\Rightarrow \ln(0.77) = -12\lambda
\Rightarrow \lambda = -\frac{\ln(0.77)}{12}
\]
Step 3: Use half-life formula \( T_{1/2} = \frac{\ln 2}{\lambda} \):
\[
T_{1/2} = \frac{\ln 2}{\frac{-\ln(0.77)}{12}} = \frac{12 \ln 2}{-\ln(0.77)}
\]
Step 4: Calculate numerically:
\[
\ln 2 \approx 0.693, \ln(0.77) \approx -0.261
\Rightarrow T_{1/2} = \frac{12 \times 0.693}{0.261} \approx \frac{8.316}{0.261} \approx 6.0 \, \text{min}
\]
Step 5: Select the correct option.
The half-life of the substance is approximately 6 minutes, matching option (4).