In seismology, Born approximation of the scattered (perturbed) wavefield is given by \[ \delta u(\mathbf{r}, \mathbf{s}; t) \approx \int_V \delta r(\mathbf{x}) \left(u_0(\mathbf{x}, \mathbf{s}; t) _t u_0(\mathbf{r}, \mathbf{x}; t)\right) \, d\mathbf{x}. \] Here, \( _t \) denotes temporal convolution, \( \delta r(\mathbf{x}) \) is the strength of the scatterer at \( \mathbf{x} \) in volume \( V \), \( \delta u(\mathbf{r}, \mathbf{s}; t) \) is the scattered wavefield measured at the receiver \( \mathbf{r} \) from the source \( \mathbf{s} \), \( u_0(\mathbf{x}, \mathbf{s}; t) \) is the downgoing wavefield (to the scatterer at \( \mathbf{x} \) from the source \( \mathbf{s} \)) in the unperturbed medium, \( u_0(\mathbf{r}, \mathbf{x}; t) \) is the upgoing wavefield (to the receiver \( \mathbf{r} \) from the scatterer at \( \mathbf{x} \)) in the unperturbed medium.
Select the correct statement(s).