We are given the equation for the de-Broglie wavelength:
\[ \lambda = \frac{h}{\sqrt{2mE}}. \]
From this equation, rearranging to solve for \( h \):
\[ h = \lambda \sqrt{2mE}. \]
Now, let's find the dimensional formula for \( h \):
Now, substitute these into the equation:
\[ [h] = [L] \times \sqrt{[M] \times [ML^2T^{-2}]}. \]
Simplifying the terms inside the square root:
\[ [h] = [L] \times \sqrt{[M] \times [M][L^2][T^{-2}]} = [L] \times \sqrt{[M^2L^2T^{-2}]} = [L] \times [MLT^{-1}]. \]
Thus, the dimensional formula for \( h \) is:
\[ [h] = [ML^2T^{-1}]. \]
Therefore, the correct answer is Option (2).
The de Broglie wavelengths of a proton and an \(\alpha\) particle are \(λ_p\) and \(λ_\alpha\) respectively. The ratio of the velocities of proton and \(\alpha\) particle will be :