We are given the equation for the de-Broglie wavelength:
\[ \lambda = \frac{h}{\sqrt{2mE}}. \]
From this equation, rearranging to solve for \( h \):
\[ h = \lambda \sqrt{2mE}. \]
Now, let's find the dimensional formula for \( h \):
Now, substitute these into the equation:
\[ [h] = [L] \times \sqrt{[M] \times [ML^2T^{-2}]}. \]
Simplifying the terms inside the square root:
\[ [h] = [L] \times \sqrt{[M] \times [M][L^2][T^{-2}]} = [L] \times \sqrt{[M^2L^2T^{-2}]} = [L] \times [MLT^{-1}]. \]
Thus, the dimensional formula for \( h \) is:
\[ [h] = [ML^2T^{-1}]. \]
Therefore, the correct answer is Option (2).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: