The de Broglie wavelength \( \lambda \) of a particle is given by the equation:
\[
\lambda = \frac{h}{p}
\]
where:
- \( h \) is Planck's constant (\( 6.626 \times 10^{-34} \, \text{J} \cdot \text{s} \)),
- \( p \) is the momentum of the particle.
The momentum \( p \) of the electron can be related to its energy. For an electron with kinetic energy \( E \), the momentum is given by:
\[
E = \frac{p^2}{2m} \quad \Rightarrow \quad p = \sqrt{2mE}
\]
where:
- \( m \) is the mass of the electron (\( 9.11 \times 10^{-31} \, \text{kg} \)),
- \( E \) is the kinetic energy of the electron.
The energy of the electron is given as 5 eV. To convert this to joules, we use:
\[
1 \, \text{eV} = 1.602 \times 10^{-19} \, \text{J}
\]
So, the kinetic energy \( E \) is:
\[
E = 5 \, \text{eV} = 5 \times 1.602 \times 10^{-19} \, \text{J} = 8.01 \times 10^{-19} \, \text{J}
\]
Now, calculate the momentum \( p \):
\[
p = \sqrt{2 \times (9.11 \times 10^{-31}) \times (8.01 \times 10^{-19})} = 1.347 \times 10^{-24} \, \text{kg} \cdot \text{m/s}
\]
Finally, calculate the de Broglie wavelength:
\[
\lambda = \frac{6.626 \times 10^{-34}}{1.347 \times 10^{-24}} = 4.92 \times 10^{-10} \, \text{m} = 0.49 \, \text{nm}
\]
Thus, the closest answer is \( \boxed{0.55 \, \text{nm}} \).