The electric charge \(q\) is given by:
\[ q = \int_{t_1}^{t_2} I(t) \, dt \]
Substituting \(I(t) = 3t^2 + 4t\) and integrating from \(t = 1 \, \text{s}\) to \(t = 2 \, \text{s}\):
\[ q = \int_{1}^{2} (3t^2 + 4t) \, dt \]
Calculating the integral:
\[ q = \left[ t^3 + 2t^2 \right]_{1}^{2} = \left( 2^3 + 2 \times 2^2 \right) - \left( 1^3 + 2 \times 1^2 \right) \]
\[ q = (8 + 8) - (1 + 2) = 16 - 3 = 22 \, \text{C} \]