- Electronic configuration of each complex: - \( [FeF_6]^{3-} \): \( [Ar] 3d^5 4s^0 \).
There are 5 unpaired electrons in the \( 3d \)-orbitals.
- \( [CoF_6]^{3-} \): \( [Ar] 3d^6 4s^0 \).
There are 4 unpaired electrons in the \( 3d \)-orbitals.
- \( [Ni(CO)_4] \): \( [Ar] 3d^8 4s^2 \).
The \( CO \) ligand is a strong field ligand, so the pairing of electrons leads to 0 unpaired electrons.
- \( [Ni(CN)_4]^{2-} \): \( [Ar] 3d^8 4s^0 \).
The \( CN \) ligand is a strong field ligand, leading to the pairing of all electrons, so there are 0 unpaired electrons.
Thus, the order of the unpaired electrons is: \[ [FeF_6]^{3-}>[CoF_6]^{3-}>[Ni(CN)_4]^{2-} = [Ni(CO)_4] \]
‘X’ is the number of electrons in $ t_2g $ orbitals of the most stable complex ion among $ [Fe(NH_3)_6]^{3+} $, $ [Fe(Cl)_6]^{3-} $, $ [Fe(C_2O_4)_3]^{3-} $ and $ [Fe(H_2O)_6]^{3+} $. The nature of oxide of vanadium of the type $ V_2O_x $ is:
Match the LIST-I with LIST-II
Choose the correct answer from the options given below:
The remainder when \( 64^{64} \) is divided by 7 is equal to:
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)