When comparing bond dissociation energies:
• Consider bond length: shorter bonds generally have higher bond energy.
• Check for lone pair-lone pair repulsions, which can weaken bonds, as seen in F2.
Cl2
I2
F2
Br2
- Bond dissociation energy is the energy required to break a bond in a molecule. - The bond energy order for halogens is:
\(Cl_2 > Br_2 > F_2 > I_2.\)
- Although F2 has a shorter bond length than Cl2, the bond energy of F2 is lower due to lone pair-lone pair repulsions. - Cl2 has the highest bond dissociation energy as it has the optimal bond length and no significant repulsions.
The cycloalkene (X) on bromination consumes one mole of bromine per mole of (X) and gives the product (Y) in which C : Br ratio is \(3:1\). The percentage of bromine in the product (Y) is _________ % (Nearest integer).
Given:
\[ \text{H} = 1,\quad \text{C} = 12,\quad \text{O} = 16,\quad \text{Br} = 80 \]
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
