When comparing bond dissociation energies:
• Consider bond length: shorter bonds generally have higher bond energy.
• Check for lone pair-lone pair repulsions, which can weaken bonds, as seen in F2.
Cl2
I2
F2
Br2
- Bond dissociation energy is the energy required to break a bond in a molecule. - The bond energy order for halogens is:
\(Cl_2 > Br_2 > F_2 > I_2.\)
- Although F2 has a shorter bond length than Cl2, the bond energy of F2 is lower due to lone pair-lone pair repulsions. - Cl2 has the highest bond dissociation energy as it has the optimal bond length and no significant repulsions.
The following data were obtained for the reaction: \[ 2NO(g) + O_2(g) \rightarrow 2N_2O(g) \] at different concentrations:
The rate law of this reaction is:
If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: