Given:
\[
[\text{A}]_0 = 0.8 \, \text{M}, \quad [\text{A}] = 0.4 \, \text{M}, \quad t = 20 \, \text{min}, \quad \ln 2 = 0.693
\]
Step 1: Formula for First-Order Reaction
For a first-order reaction:
\[
k = \frac{1}{t} \ln \left( \frac{[\text{A}]_0}{[\text{A}]} \right)
\]
The half-life is:
\[
t_{1/2} = \frac{\ln 2}{k}
\]
Step 2: Calculate Rate Constant
Substitute the values:
\[
k = \frac{1}{20} \ln \left( \frac{0.8}{0.4} \right) = \frac{1}{20} \ln 2 = \frac{0.693}{20}
\]
Step 3: Calculate Half-Life
\[
t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{\frac{0.693}{20}} = 20 \, \text{min}
\]
Thus, the half-life is:
\[
\boxed{20 \, \text{min}}
\]