Using the mass-energy equivalence \( E = \Delta m c^2 \), the mass defect \( \Delta m \) is calculated as:
\[ \Delta m = \frac{E}{c^2}. \]
Substituting the values:
\[ E = 18 \times 10^8 \, \text{J}, \, c = 3 \times 10^8 \, \text{m/s}, \]
\[ \Delta m = \frac{18 \times 10^8}{(3 \times 10^8)^2} = \frac{18 \times 10^8}{9 \times 10^{16}} = 2 \times 10^{-8} \, \text{kg}. \]
Converting \( \Delta m \) to micrograms (\( \mu g \)):
\[ \Delta m = 2 \times 10^{-8} \, \text{kg} = 20 \, \mu g. \]
Final Answer: 20 \( \mu g \)
Mass Defect and Energy Released in the Fission of \( ^{235}_{92}\text{U} \)
When a neutron collides with \( ^{235}_{92}\text{U} \), the nucleus gives \( ^{140}_{54}\text{Xe} \) and \( ^{94}_{38}\text{Sr} \) as fission products, and two neutrons are ejected. Calculate the mass defect and the energy released (in MeV) in the process.
Given:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: