Using the mass-energy equivalence \( E = \Delta m c^2 \), the mass defect \( \Delta m \) is calculated as:
\[ \Delta m = \frac{E}{c^2}. \]
Substituting the values:
\[ E = 18 \times 10^8 \, \text{J}, \, c = 3 \times 10^8 \, \text{m/s}, \]
\[ \Delta m = \frac{18 \times 10^8}{(3 \times 10^8)^2} = \frac{18 \times 10^8}{9 \times 10^{16}} = 2 \times 10^{-8} \, \text{kg}. \]
Converting \( \Delta m \) to micrograms (\( \mu g \)):
\[ \Delta m = 2 \times 10^{-8} \, \text{kg} = 20 \, \mu g. \]
Final Answer: 20 \( \mu g \)
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.
In the light of the above statements, choose the most appropriate answer from the options given below:
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline A. \ ^{236}_{92} U \rightarrow ^{94}_{38} Sr + ^{140}_{54} Xe + 2n & \text{I. Chemical Reaction} \\ \hline B. \ 2H_2 + O_2 \rightarrow 2H_2O & \text{II. Fusion with +ve Q value} \\ \hline C. \ ^3_1 H + ^2_1 H \rightarrow ^4_2 He + n & \text{III. Fission} \\ \hline D. \ ^1_1 H + ^3_1 H \rightarrow ^4_2 H + \gamma & \text{IV. Fusion with -ve Q value} \\ \hline \end{array} \]
Choose the correct answer from the options given below:
Match the following types of nuclei with examples shown:
Match List-I with List-II: List-I