Using the mass-energy equivalence \( E = \Delta m c^2 \), the mass defect \( \Delta m \) is calculated as:
\[ \Delta m = \frac{E}{c^2}. \]
Substituting the values:
\[ E = 18 \times 10^8 \, \text{J}, \, c = 3 \times 10^8 \, \text{m/s}, \]
\[ \Delta m = \frac{18 \times 10^8}{(3 \times 10^8)^2} = \frac{18 \times 10^8}{9 \times 10^{16}} = 2 \times 10^{-8} \, \text{kg}. \]
Converting \( \Delta m \) to micrograms (\( \mu g \)):
\[ \Delta m = 2 \times 10^{-8} \, \text{kg} = 20 \, \mu g. \]
Final Answer: 20 \( \mu g \)
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32