For a monatomic gas, the average kinetic energy per molecule is:
\[ KE = \frac{3}{2} k_B T \]
Given \( KE = 0.414 \, \text{eV} \), convert this to joules:
\[ 0.414 \, \text{eV} = 0.414 \times 1.6 \times 10^{-19} \, \text{J} = 6.624 \times 10^{-20} \, \text{J} \]
Now,
\[ 6.624 \times 10^{-20} = \frac{3}{2} \times 1.38 \times 10^{-23} \times T \]
Solving for \( T \):
\[ T = \frac{6.624 \times 10^{-20}}{\left(\frac{3}{2}\right) \times 1.38 \times 10^{-23}} \approx 3200 \, \text{K} \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: