To find the temperature at which the average kinetic energy of a monatomic molecule is 0.414 eV, we can use the formula that relates the average kinetic energy of a gas molecule to the temperature. The average kinetic energy per molecule for a monatomic ideal gas is given by the equation:
\(KE_{\text{avg}} = \frac{3}{2} k_B T\)
Where:
First, convert the given kinetic energy from electronvolts (eV) to joules (J):
\(1 \, \text{eV} = 1.602 \times 10^{-19} \, \text{J}\)
Therefore,
\(0.414 \, \text{eV} = 0.414 \times 1.602 \times 10^{-19} \, \text{J} = 6.633 \times 10^{-20} \, \text{J}\)
Now, substitute this value into the equation for average kinetic energy:
\(\frac{3}{2} k_B T = 6.633 \times 10^{-20}\)
Solving for \(T\):
\(T = \frac{2 \times 6.633 \times 10^{-20}}{3 \times 1.38 \times 10^{-23}}\)
\(T = \frac{1.3266 \times 10^{-19}}{4.14 \times 10^{-23}}\)
\(T = 3204.35 \, \text{K}\)
Rounded to the nearest whole number, this gives \(T = 3200 \, \text{K}\).
Thus, the correct answer is 3200 K.
For a monatomic gas, the average kinetic energy per molecule is:
\[ KE = \frac{3}{2} k_B T \]
Given \( KE = 0.414 \, \text{eV} \), convert this to joules:
\[ 0.414 \, \text{eV} = 0.414 \times 1.6 \times 10^{-19} \, \text{J} = 6.624 \times 10^{-20} \, \text{J} \]
Now,
\[ 6.624 \times 10^{-20} = \frac{3}{2} \times 1.38 \times 10^{-23} \times T \]
Solving for \( T \):
\[ T = \frac{6.624 \times 10^{-20}}{\left(\frac{3}{2}\right) \times 1.38 \times 10^{-23}} \approx 3200 \, \text{K} \]
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals:
Designate whether each of the following compounds is aromatic or not aromatic.
