For a monatomic gas, the average kinetic energy per molecule is:
\[ KE = \frac{3}{2} k_B T \]
Given \( KE = 0.414 \, \text{eV} \), convert this to joules:
\[ 0.414 \, \text{eV} = 0.414 \times 1.6 \times 10^{-19} \, \text{J} = 6.624 \times 10^{-20} \, \text{J} \]
Now,
\[ 6.624 \times 10^{-20} = \frac{3}{2} \times 1.38 \times 10^{-23} \times T \]
Solving for \( T \):
\[ T = \frac{6.624 \times 10^{-20}}{\left(\frac{3}{2}\right) \times 1.38 \times 10^{-23}} \approx 3200 \, \text{K} \]