Rearrange the equations: The parabola:
\[ (y - 2)^2 = x - 1 \implies y - 2 = \sqrt{x - 1}. \]
- The line:
\[ x - 2y + 4 = 0 \implies y = \frac{x + 4}{2}. \]
Find points of intersection: Set the equations equal:
\[ \frac{x + 4}{2} = \sqrt{x - 1} + 2. \]
Rearranging and squaring gives:
\[ (x - 2)^2 = 0 \implies x = 2. \]
Find corresponding \( y \): Substitute \( x = 2 \):
\[ y = \frac{2 + 4}{2} = 3. \]
Identify area: Compute:
\[ A = \int_{1}^{2} \left( \frac{x + 4}{2} - (2 + \sqrt{x - 1}) \right) dx. \]
Evaluate the integral:
\[ A = \int_{1}^{2} \left( \frac{x + 4}{2} - 2 - \sqrt{x - 1} \right) dx. \]
Combine results:
\[ A = \left[ \frac{2^2 + 8 \times 2}{4} - 2(2) - \frac{2}{3}(2 - 1)^{3/2} \right] - \left[ \frac{1^2 + 8 \times 1}{4} - 2(1) - \frac{2}{3}(1 - 1)^{3/2} \right]. \]
= 9 - 18 + 15 - 1 = 5
After evaluation, we find: 5