The equation of the parabola is: \[ y^2 = 16x; \, a = 4 \] The focus \( S \) is \( (4, 0) \), and the point \( P \) is \( (1, -4) \).
From the equation of the parabola, we know the parametric equations for the points on the parabola: \[ t_1 = -4, \, 2a t_1 = -4 \implies t_1 = \frac{-1}{2} \] \[ t_2 = 2 \implies Q(at_2^2, 2at_2) = (16, 16) \] Let \( S \) divides \( PQ \) internally in the ratio \( \lambda : 1 \): \[ 16\lambda - 4 = 0 \quad \implies \lambda = \frac{1}{4} \] Thus, the ratio \( \frac{m}{n} = \frac{1}{4} \), and: \[ m^2 + n^2 = 1 + 16 = 17 \]
Let the focal chord PQ of the parabola $ y^2 = 4x $ make an angle of $ 60^\circ $ with the positive x-axis, where P lies in the first quadrant. If the circle, whose one diameter is PS, $ S $ being the focus of the parabola, touches the y-axis at the point $ (0, \alpha) $, then $ 5\alpha^2 $ is equal to:
Let A = \(\begin{bmatrix} \log_5 128 & \log_4 5 \log_5 8 & \log_4 25 \end{bmatrix}\) \). If \(A_{ij}\) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^2 a_{ik} A_{jk} \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to:
A molecule with the formula $ \text{A} \text{X}_2 \text{Y}_2 $ has all it's elements from p-block. Element A is rarest, monotomic, non-radioactive from its group and has the lowest ionization energy value among X and Y. Elements X and Y have first and second highest electronegativity values respectively among all the known elements. The shape of the molecule is:
A transition metal (M) among Mn, Cr, Co, and Fe has the highest standard electrode potential $ M^{n}/M^{n+1} $. It forms a metal complex of the type $[M \text{CN}]^{n+}$. The number of electrons present in the $ e $-orbital of the complex is ... ...
Consider the following electrochemical cell at standard condition. $$ \text{Au(s) | QH}_2\text{ | QH}_X(0.01 M) \, \text{| Ag(1M) | Ag(s) } \, E_{\text{cell}} = +0.4V $$ The couple QH/Q represents quinhydrone electrode, the half cell reaction is given below: $$ \text{QH}_2 \rightarrow \text{Q} + 2e^- + 2H^+ \, E^\circ_{\text{QH}/\text{Q}} = +0.7V $$
0.1 mol of the following given antiviral compound (P) will weigh .........x $ 10^{-1} $ g.