Step 1: Rearranging both equations into standard parabola form.
Step 2: Find points of intersection.
Equating both expressions for \( x \): \[ \frac{16 - y^2}{8} = \frac{y^2 - 48}{24} \] Multiply both sides by 24: \[ 3(16 - y^2) = y^2 - 48 \Rightarrow 48 - 3y^2 = y^2 - 48 \Rightarrow 48 + 48 = 3y^2 + y^2 \Rightarrow 96 = 4y^2 \Rightarrow y^2 = 24 \Rightarrow y = \pm \sqrt{24} = \pm 2\sqrt{6} \]
So the curves intersect at \( y = -2\sqrt{6} \) and \( y = 2\sqrt{6} \)
Step 3: Area between vertical curves using horizontal strips.
Use: \[ \text{Area} = \int_{y = -2\sqrt{6}}^{2\sqrt{6}} \left[ x_{\text{right}} - x_{\text{left}} \right] dy \] Here:
\[ \text{Area} = \int_{-2\sqrt{6}}^{2\sqrt{6}} \left( \frac{y^2 - 48}{24} - \frac{16 - y^2}{8} \right) dy \] Simplify the integrand:
First write both fractions with common denominator: \[ \frac{y^2 - 48}{24} - \frac{16 - y^2}{8} = \frac{y^2 - 48}{24} - \frac{16 - y^2}{8} = \frac{y^2 - 48}{24} - \frac{16 - y^2}{8} \]
Bring both terms to same base: \[ = \frac{y^2 - 48}{24} - \frac{2(16 - y^2)}{16} = \text{(use 24 as LCM)} \Rightarrow \frac{y^2 - 48 - 3(16 - y^2)}{24} = \frac{y^2 - 48 - 48 + 3y^2}{24} = \frac{4y^2 - 96}{24} = \frac{y^2 - 24}{6} \]
So the integrand is: \[ \frac{y^2 - 24}{6} \Rightarrow \text{Area} = \int_{-2\sqrt{6}}^{2\sqrt{6}} \frac{y^2 - 24}{6} dy \] Since the function is even, use symmetry: \[ \text{Area} = 2 \int_{0}^{2\sqrt{6}} \frac{y^2 - 24}{6} dy = \frac{2}{6} \int_0^{2\sqrt{6}} (y^2 - 24) dy = \frac{1}{3} \left[ \int_0^{2\sqrt{6}} y^2 dy - \int_0^{2\sqrt{6}} 24 dy \right] \]
Compute each integral:
\[ \text{Area} = \frac{1}{3} (16\sqrt{6} - 48\sqrt{6}) = \frac{1}{3} (-33\sqrt{6}) = -\frac{33\sqrt{6}}{3} \]
Take absolute value, since area cannot be negative: \[ \boxed{\text{Area} = \frac{33\sqrt{6}}{3}} \quad \text{(Not matching options)} \]
The area of the region enclosed between the curve \( y = |x| \), x-axis, \( x = -2 \)} and \( x = 2 \) is:
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
If the area of the region $$ \{(x, y): |4 - x^2| \leq y \leq x^2, y \geq 0\} $$ is $ \frac{80\sqrt{2}}{\alpha - \beta} $, $ \alpha, \beta \in \mathbb{N} $, then $ \alpha + \beta $ is equal to: