Question:

The area of the figure bounded by the parabola $y^2 + 8x = 16$ and $y^2 - 24x = 48$ is

Updated On: Apr 15, 2025
  • 11/9 sq. unit
  • 33/3√ 6 sq. unit
  • 16/3 sq. unit
  • 24/5 sq.unit
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Rearranging both equations into standard parabola form.

  • First equation: \( y^2 + 8x = 16 \Rightarrow y^2 = -8x + 16 \Rightarrow x = \frac{16 - y^2}{8} \)
  • Second equation: \( y^2 - 24x = 48 \Rightarrow y^2 = 24x + 48 \Rightarrow x = \frac{y^2 - 48}{24} \)

Step 2: Find points of intersection.

Equating both expressions for \( x \): \[ \frac{16 - y^2}{8} = \frac{y^2 - 48}{24} \] Multiply both sides by 24: \[ 3(16 - y^2) = y^2 - 48 \Rightarrow 48 - 3y^2 = y^2 - 48 \Rightarrow 48 + 48 = 3y^2 + y^2 \Rightarrow 96 = 4y^2 \Rightarrow y^2 = 24 \Rightarrow y = \pm \sqrt{24} = \pm 2\sqrt{6} \]

So the curves intersect at \( y = -2\sqrt{6} \) and \( y = 2\sqrt{6} \)

Step 3: Area between vertical curves using horizontal strips.
Use: \[ \text{Area} = \int_{y = -2\sqrt{6}}^{2\sqrt{6}} \left[ x_{\text{right}} - x_{\text{left}} \right] dy \] Here:

  • \( x_{\text{right}} = \frac{y^2 - 48}{24} \)
  • \( x_{\text{left}} = \frac{16 - y^2}{8} \)

\[ \text{Area} = \int_{-2\sqrt{6}}^{2\sqrt{6}} \left( \frac{y^2 - 48}{24} - \frac{16 - y^2}{8} \right) dy \] Simplify the integrand:

First write both fractions with common denominator: \[ \frac{y^2 - 48}{24} - \frac{16 - y^2}{8} = \frac{y^2 - 48}{24} - \frac{16 - y^2}{8} = \frac{y^2 - 48}{24} - \frac{16 - y^2}{8} \]

Bring both terms to same base: \[ = \frac{y^2 - 48}{24} - \frac{2(16 - y^2)}{16} = \text{(use 24 as LCM)} \Rightarrow \frac{y^2 - 48 - 3(16 - y^2)}{24} = \frac{y^2 - 48 - 48 + 3y^2}{24} = \frac{4y^2 - 96}{24} = \frac{y^2 - 24}{6} \]

So the integrand is: \[ \frac{y^2 - 24}{6} \Rightarrow \text{Area} = \int_{-2\sqrt{6}}^{2\sqrt{6}} \frac{y^2 - 24}{6} dy \] Since the function is even, use symmetry: \[ \text{Area} = 2 \int_{0}^{2\sqrt{6}} \frac{y^2 - 24}{6} dy = \frac{2}{6} \int_0^{2\sqrt{6}} (y^2 - 24) dy = \frac{1}{3} \left[ \int_0^{2\sqrt{6}} y^2 dy - \int_0^{2\sqrt{6}} 24 dy \right] \]

Compute each integral:

  • \( \int_0^{2\sqrt{6}} y^2 dy = \left[ \frac{y^3}{3} \right]_0^{2\sqrt{6}} = \frac{(2\sqrt{6})^3}{3} = \frac{8 \cdot 6\sqrt{6}}{3} = \frac{48\sqrt{6}}{3} = 16\sqrt{6} \)
  • \( \int_0^{2\sqrt{6}} 24 dy = 24 \cdot 2\sqrt{6} = 48\sqrt{6} \)

\[ \text{Area} = \frac{1}{3} (16\sqrt{6} - 48\sqrt{6}) = \frac{1}{3} (-33\sqrt{6}) = -\frac{33\sqrt{6}}{3} \]

 

Take absolute value, since area cannot be negative: \[ \boxed{\text{Area} = \frac{33\sqrt{6}}{3}} \quad \text{(Not matching options)} \]

 

Was this answer helpful?
0
0