The correct answer is 18

Required Area :
\(= \int_{-4}^{2} \left(4 - y - \frac{y^2}{2}\right) \,dy\)
\(=\left[4y - \frac{y^2}{2} - \frac{y^3}{6}\right]_{2}^{4}\)
= 18 square units.
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Considering Bohr’s atomic model for hydrogen atom :
(A) the energy of H atom in ground state is same as energy of He+ ion in its first excited state.
(B) the energy of H atom in ground state is same as that for Li++ ion in its second excited state.
(C) the energy of H atom in its ground state is same as that of He+ ion for its ground state.
(D) the energy of He+ ion in its first excited state is same as that for Li++ ion in its ground state.


A slanted object AB is placed on one side of convex lens as shown in the diagram. The image is formed on the opposite side. Angle made by the image with principal axis is: 
Integral calculus is the method that can be used to calculate the area between two curves that fall in between two intersecting curves. Similarly, we can use integration to find the area under two curves where we know the equation of two curves and their intersection points. In the given image, we have two functions f(x) and g(x) where we need to find the area between these two curves given in the shaded portion.

Area Between Two Curves With Respect to Y is
If f(y) and g(y) are continuous on [c, d] and g(y) < f(y) for all y in [c, d], then,
