Step 1: The given equation is \( x = 4 - y^2 \). The area is bounded by the curve and the Y-axis. We first find the limits of integration by setting \( x = 0 \):
\[ 0 = 4 - y^2 \quad \implies \quad y^2 = 4 \quad \implies \quad y = \pm 2 \]
Step 2: The area is the integral of \( x = 4 - y^2 \) from \( y = -2 \) to \( y = 2 \):
\[ \text{Area} = \int_{-2}^{2} \left( 4 - y^2 \right) dy \]
Step 3: Compute the integral:
\[ \text{Area} = \left[ 4y - \frac{y^3}{3} \right]_{-2}^{2} \]
Step 4: Substituting the limits:
\[ \text{Area} = \left( 4(2) - \frac{(2)^3}{3} \right) - \left( 4(-2) - \frac{(-2)^3}{3} \right) = 16 - \frac{16}{3} \] \[ \text{Area} = \frac{48}{3} - \frac{16}{3} = \frac{32}{3} \]
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: