Step 1: Value of the function at $x=0$.
\[
f(0) = 1
\]
Step 2: Left-hand and right-hand limits as $x \to 0$.
\[
\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x^3+3) = 3
\]
\[
\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x^3+3) = 3
\]
So,
\[
\lim_{x \to 0} f(x) = 3
\]
Step 3: Compare limit with $f(0)$.
\[
\lim_{x \to 0} f(x) = 3 \neq f(0) = 1
\]
Step 4: Conclusion.
Since $\lim_{x \to 0} f(x) \neq f(0)$,
\[
\boxed{f(x) \;\text{is not continuous at}\; x=0}
\]