The Williamson Ether Synthesis is a key reaction for preparing ethers. Remem ber that it’s an SN2 reaction, so it works best with primary alkyl halides (or those with minimal steric hindrance). If a tertiary alkyl halide is used, an elim ination reaction is more likely to occur.
The Williamson ether synthesis involves the reaction of an alkoxide ion with a primary alkyl halide to form an ether:
General Reaction:
\[ R-O^- + R'-X \rightarrow R-O-R' + X^- \]
\[ \text{PhO}^- \text{Na}^+ + \text{MeBr} \rightarrow \text{Ph-O-Me} + \text{NaBr} \]
Mechanism: The phenoxide ion (\( \text{PhO}^- \)) acts as a nucleophile in an SN2 reaction, attacking the methyl carbon of the methyl bromide. This displaces the bromide ion and forms the ether linkage.
Methyl phenyl ether (anisole) is prepared by reacting phenoxide ion with methyl bromide in the Williamson ether synthesis.
The correct increasing order of stability of the complexes based on \( \Delta \) value is:
Match List-I with List-II: List-I
List I (Molecule) | List II (Number and types of bond/s between two carbon atoms) | ||
A. | ethane | I. | one σ-bond and two π-bonds |
B. | ethene | II. | two π-bonds |
C. | carbon molecule, C2 | III. | one σ-bonds |
D. | ethyne | IV. | one σ-bond and one π-bond |
If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]