We need to analyze two statements: \[ \text{(S1): } \sin 55^\circ + \sin 53^\circ - \sin 19^\circ - \sin 17^\circ = \cos 2^\circ \] \[ \text{(S2): } \text{The range of } \frac{1}{3 - \cos 2x} \text{ is } \left[\frac{1}{4}, \frac{1}{2} \right] \]
Step 1: Verifying Statement (S1)
We use the sine addition-subtraction identities: \[ \sin A + \sin B = 2 \sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right) \] Applying this identity, \[ \sin 55^\circ + \sin 53^\circ = 2 \sin \left(\frac{55^\circ + 53^\circ}{2} \right) \cos \left(\frac{55^\circ - 53^\circ}{2} \right) = 2 \sin 54^\circ \cos 1^\circ \] \[ \sin 19^\circ + \sin 17^\circ = 2 \sin \left(\frac{19^\circ + 17^\circ}{2} \right) \cos \left(\frac{19^\circ - 17^\circ}{2} \right) = 2 \sin 18^\circ \cos 1^\circ \] Now, \[ \sin 55^\circ + \sin 53^\circ - \sin 19^\circ - \sin 17^\circ = 2 \cos 1^\circ (\sin 54^\circ - \sin 18^\circ) \] Since \( \sin 54^\circ \approx 0.809 \) and \( \sin 18^\circ \approx 0.309 \), \[ \sin 54^\circ - \sin 18^\circ = 0.809 - 0.309 = 0.5 \] Thus, \[ \text{LHS} = 2 \cos 1^\circ \times 0.5 = \cos 1^\circ \approx 0.999 \] Since \( \cos 2^\circ \approx 0.999 \), the two sides are close but **not exactly equal**.
Conclusion: (S1) is False. Step 2: Verifying Statement (S2)
Given, \[ f(x) = \frac{1}{3 - \cos 2x} \] Since \( \cos 2x \in [-1, 1] \), - Maximum value of \( 3 - \cos 2x = 3 - (-1) = 4 \)
- Minimum value of \( 3 - \cos 2x = 3 - 1 = 2 \)
Thus, \[ f(x) = \frac{1}{3 - \cos 2x} \in \left[\frac{1}{4}, \frac{1}{2} \right] \]
Conclusion: (S2) is True. Final Answer: (D) (S1) is false, (S2) is true.
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))