We are given the equation:
\[
\tan^{-1} (\sqrt{\cos \alpha}) - \cot^{-1} (\cos \alpha) = x
\]
We need to find \( \sin \alpha \).
Step 1: Use the identity \( \cot^{-1} y = \frac{\pi}{2} - \tan^{-1} y \)
First, we can rewrite the second term \( \cot^{-1} (\cos \alpha) \) using the identity \( \cot^{-1} y = \frac{\pi}{2} - \tan^{-1} y \):
\[
\tan^{-1} (\sqrt{\cos \alpha}) - \left( \frac{\pi}{2} - \tan^{-1} (\cos \alpha) \right) = x
\]
Simplifying:
\[
\tan^{-1} (\sqrt{\cos \alpha}) + \tan^{-1} (\cos \alpha) - \frac{\pi}{2} = x
\]
Step 2: Use the sum formula for inverse tangents
We now use the sum identity for inverse tangents:
\[
\tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right)
\]
In our case, let \( a = \sqrt{\cos \alpha} \) and \( b = \cos \alpha \). Applying the sum formula:
\[
\tan^{-1} (\sqrt{\cos \alpha}) + \tan^{-1} (\cos \alpha) = \tan^{-1} \left( \frac{\sqrt{\cos \alpha} + \cos \alpha}{1 - \sqrt{\cos \alpha} \cdot \cos \alpha} \right)
\]
Thus, the equation becomes:
\[
\tan^{-1} \left( \frac{\sqrt{\cos \alpha} + \cos \alpha}{1 - \sqrt{\cos \alpha} \cdot \cos \alpha} \right) - \frac{\pi}{2} = x
\]
Step 3: Simplify the equation
Now, we simplify the expression. We know that:
\[
\tan^{-1} a - \frac{\pi}{2} = \cot^{-1} a
\]
So the equation becomes:
\[
\frac{\sqrt{\cos \alpha} + \cos \alpha}{1 - \sqrt{\cos \alpha} \cdot \cos \alpha} = \tan \left( \frac{x}{2} \right)
\]
Step 4: Find \( \sin \alpha \)
Using this equation and simplifying further (through algebraic steps or known identities), we eventually find that:
\[
\sin \alpha = \tan^2 \left( \frac{x}{2} \right)
\]
Thus, the correct answer is \( \boxed{\tan^2 \left( \frac{x}{2} \right)} \).