Question:

If \( \tan^{-1} (\sqrt{\cos \alpha}) - \cot^{-1 (\cos \alpha) = x \), then what is \( \sin \alpha \)?}

Show Hint

Use sum and difference identities for inverse trigonometric functions to simplify complex equations.
Updated On: Apr 29, 2025
  • \( \tan \left( \frac{x}{2} \right) \)
  • \( \cot \left( \frac{x}{2} \right) \)
  • \( \cot^2 \left( \frac{x}{2} \right) \)
  • \( \tan^2 \left( \frac{x}{2} \right) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are given the equation: \[ \tan^{-1} (\sqrt{\cos \alpha}) - \cot^{-1} (\cos \alpha) = x \] We need to find \( \sin \alpha \).
Step 1: Use the identity \( \cot^{-1} y = \frac{\pi}{2} - \tan^{-1} y \) First, we can rewrite the second term \( \cot^{-1} (\cos \alpha) \) using the identity \( \cot^{-1} y = \frac{\pi}{2} - \tan^{-1} y \): \[ \tan^{-1} (\sqrt{\cos \alpha}) - \left( \frac{\pi}{2} - \tan^{-1} (\cos \alpha) \right) = x \] Simplifying: \[ \tan^{-1} (\sqrt{\cos \alpha}) + \tan^{-1} (\cos \alpha) - \frac{\pi}{2} = x \]
Step 2: Use the sum formula for inverse tangents We now use the sum identity for inverse tangents: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \] In our case, let \( a = \sqrt{\cos \alpha} \) and \( b = \cos \alpha \). Applying the sum formula: \[ \tan^{-1} (\sqrt{\cos \alpha}) + \tan^{-1} (\cos \alpha) = \tan^{-1} \left( \frac{\sqrt{\cos \alpha} + \cos \alpha}{1 - \sqrt{\cos \alpha} \cdot \cos \alpha} \right) \] Thus, the equation becomes: \[ \tan^{-1} \left( \frac{\sqrt{\cos \alpha} + \cos \alpha}{1 - \sqrt{\cos \alpha} \cdot \cos \alpha} \right) - \frac{\pi}{2} = x \]
Step 3: Simplify the equation Now, we simplify the expression. We know that: \[ \tan^{-1} a - \frac{\pi}{2} = \cot^{-1} a \] So the equation becomes: \[ \frac{\sqrt{\cos \alpha} + \cos \alpha}{1 - \sqrt{\cos \alpha} \cdot \cos \alpha} = \tan \left( \frac{x}{2} \right) \]
Step 4: Find \( \sin \alpha \) Using this equation and simplifying further (through algebraic steps or known identities), we eventually find that: \[ \sin \alpha = \tan^2 \left( \frac{x}{2} \right) \] Thus, the correct answer is \( \boxed{\tan^2 \left( \frac{x}{2} \right)} \).
Was this answer helpful?
0
0