Simplify:
\( \tan^{-1} \left( \frac{\cos x}{1 - \sin x} \right) \)
Multiply numerator and denominator by \( 1 + \sin x \):
\[ \tan^{-1} \left( \frac{\cos x}{1 - \sin x} \cdot \frac{1 + \sin x}{1 + \sin x} \right) = \tan^{-1} \left( \frac{\cos x (1 + \sin x)}{(1 - \sin x)(1 + \sin x)} \right) \]
Denominator becomes:
\[ (1 - \sin x)(1 + \sin x) = 1 - \sin^2 x = \cos^2 x \]
Numerator becomes:
\[ \cos x (1 + \sin x) \]
So the expression becomes:
\[ \tan^{-1} \left( \frac{\cos x (1 + \sin x)}{\cos^2 x} \right) \]
Simplify:
\[ \tan^{-1} \left( \frac{1 + \sin x}{\cos x} \right) \]
Now, use identity:
\[ \frac{1 + \sin x}{\cos x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right) \]
Therefore,
\[ \tan^{-1} \left( \frac{\cos x}{1 - \sin x} \right) = \frac{\pi}{4} + \frac{x}{2} \]
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
For the curve \( \sqrt{x} + \sqrt{y} = 1 \), find the value of \( \frac{dy}{dx} \) at the point \( \left(\frac{1}{9}, \frac{1}{9}\right) \).
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]