Simplify:
\( \tan^{-1} \left( \frac{\cos x}{1 - \sin x} \right) \)
Multiply numerator and denominator by \( 1 + \sin x \):
\[ \tan^{-1} \left( \frac{\cos x}{1 - \sin x} \cdot \frac{1 + \sin x}{1 + \sin x} \right) = \tan^{-1} \left( \frac{\cos x (1 + \sin x)}{(1 - \sin x)(1 + \sin x)} \right) \]
Denominator becomes:
\[ (1 - \sin x)(1 + \sin x) = 1 - \sin^2 x = \cos^2 x \]
Numerator becomes:
\[ \cos x (1 + \sin x) \]
So the expression becomes:
\[ \tan^{-1} \left( \frac{\cos x (1 + \sin x)}{\cos^2 x} \right) \]
Simplify:
\[ \tan^{-1} \left( \frac{1 + \sin x}{\cos x} \right) \]
Now, use identity:
\[ \frac{1 + \sin x}{\cos x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right) \]
Therefore,
\[ \tan^{-1} \left( \frac{\cos x}{1 - \sin x} \right) = \frac{\pi}{4} + \frac{x}{2} \]
Find the Derivative \( \frac{dy}{dx} \)
Given:\[ y = \cos(x^2) + \cos(2x) + \cos^2(x^2) + \cos(x^x) \]
Solve the following LPP graphically: Maximize: \[ Z = 2x + 3y \] Subject to: \[ \begin{aligned} x + 4y &\leq 8 \quad \text{(1)} \\ 2x + 3y &\leq 12 \quad \text{(2)} \\ 3x + y &\leq 9 \quad \text{(3)} \\ x &\geq 0,\quad y \geq 0 \quad \text{(non-negativity constraints)} \end{aligned} \]