Simplify:
\( \tan^{-1} \left( \frac{\cos x}{1 - \sin x} \right) \)
Multiply numerator and denominator by \( 1 + \sin x \):
\[ \tan^{-1} \left( \frac{\cos x}{1 - \sin x} \cdot \frac{1 + \sin x}{1 + \sin x} \right) = \tan^{-1} \left( \frac{\cos x (1 + \sin x)}{(1 - \sin x)(1 + \sin x)} \right) \]
Denominator becomes:
\[ (1 - \sin x)(1 + \sin x) = 1 - \sin^2 x = \cos^2 x \]
Numerator becomes:
\[ \cos x (1 + \sin x) \]
So the expression becomes:
\[ \tan^{-1} \left( \frac{\cos x (1 + \sin x)}{\cos^2 x} \right) \]
Simplify:
\[ \tan^{-1} \left( \frac{1 + \sin x}{\cos x} \right) \]
Now, use identity:
\[ \frac{1 + \sin x}{\cos x} = \tan \left( \frac{\pi}{4} + \frac{x}{2} \right) \]
Therefore,
\[ \tan^{-1} \left( \frac{\cos x}{1 - \sin x} \right) = \frac{\pi}{4} + \frac{x}{2} \]
Prove that:
\( \tan^{-1}(\sqrt{x}) = \frac{1}{2} \cos^{-1}\left( \frac{1 - x}{1 + x} \right), \quad x \in [0, 1] \)
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is: