Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
We need to simplify the principal value \( \sin^{-1}\!\left( \frac{\sqrt{3}}{2}\,x + \frac{1}{2}\sqrt{1-x^2} \right) \) for \( -\tfrac{1}{2} < x < \tfrac{1}{\sqrt{2}} \).
Use the identity \(a\sin\theta + b\cos\theta = R\sin(\theta+\phi)\) where \(R=\sqrt{a^2+b^2}\), \( \cos\phi=\frac{a}{R} \), \( \sin\phi=\frac{b}{R}\). Also set \(x=\sin\theta\) so that \(\sqrt{1-x^2}=\cos\theta\) when \(\theta\in[-\tfrac{\pi}{2},\tfrac{\pi}{2}]\).
Step 1: Parameterize \(x\) by \(x=\sin\theta\) with \(\theta=\sin^{-1}x\in\left(-\tfrac{\pi}{6},\,\tfrac{\pi}{4}\right)\)
Step 2: Write as a single sine:
\[ \frac{\sqrt{3}}{2}\sin\theta+\frac{1}{2}\cos\theta = \sin\theta\cdot\cos\frac{\pi}{6}+\cos\theta\cdot\sin\frac{\pi}{6} = \sin\!\left(\theta+\frac{\pi}{6}\right). \]
Step 3: Check principal range for arcsin.
\[ \theta\in\left(-\frac{\pi}{6},\,\frac{\pi}{4}\right)\;\Rightarrow\; \theta+\frac{\pi}{6}\in\left(0,\,\frac{5\pi}{12}\right)\subset\left[-\frac{\pi}{2},\frac{\pi}{2}\right]. \] Thus, \[ \sin^{-1}\!\left(\sin\!\left(\theta+\frac{\pi}{6}\right)\right)=\theta+\frac{\pi}{6}. \]
\[ \sin^{-1}\!\left( \frac{\sqrt{3}}{2}\,x + \frac{1}{2}\sqrt{1-x^2} \right) = \sin^{-1}x + \frac{\pi}{6}. \]
Answer: \( \boxed{\,\sin^{-1}x + \dfrac{\pi}{6}\,} \)
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: