Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
We need to simplify the principal value \( \sin^{-1}\!\left( \frac{\sqrt{3}}{2}\,x + \frac{1}{2}\sqrt{1-x^2} \right) \) for \( -\tfrac{1}{2} < x < \tfrac{1}{\sqrt{2}} \).
Use the identity \(a\sin\theta + b\cos\theta = R\sin(\theta+\phi)\) where \(R=\sqrt{a^2+b^2}\), \( \cos\phi=\frac{a}{R} \), \( \sin\phi=\frac{b}{R}\). Also set \(x=\sin\theta\) so that \(\sqrt{1-x^2}=\cos\theta\) when \(\theta\in[-\tfrac{\pi}{2},\tfrac{\pi}{2}]\).
Step 1: Parameterize \(x\) by \(x=\sin\theta\) with \(\theta=\sin^{-1}x\in\left(-\tfrac{\pi}{6},\,\tfrac{\pi}{4}\right)\)
Step 2: Write as a single sine:
\[ \frac{\sqrt{3}}{2}\sin\theta+\frac{1}{2}\cos\theta = \sin\theta\cdot\cos\frac{\pi}{6}+\cos\theta\cdot\sin\frac{\pi}{6} = \sin\!\left(\theta+\frac{\pi}{6}\right). \]
Step 3: Check principal range for arcsin.
\[ \theta\in\left(-\frac{\pi}{6},\,\frac{\pi}{4}\right)\;\Rightarrow\; \theta+\frac{\pi}{6}\in\left(0,\,\frac{5\pi}{12}\right)\subset\left[-\frac{\pi}{2},\frac{\pi}{2}\right]. \] Thus, \[ \sin^{-1}\!\left(\sin\!\left(\theta+\frac{\pi}{6}\right)\right)=\theta+\frac{\pi}{6}. \]
\[ \sin^{-1}\!\left( \frac{\sqrt{3}}{2}\,x + \frac{1}{2}\sqrt{1-x^2} \right) = \sin^{-1}x + \frac{\pi}{6}. \]
Answer: \( \boxed{\,\sin^{-1}x + \dfrac{\pi}{6}\,} \)
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is: