Question:

Show that the lines\(\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}\) and \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) are perpendicular to each other.

Updated On: Sep 19, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

The equations of the given lines are \(\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}\) and \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)

The direction ratios of the given lines are 7, -5, 1 and 1, 2, 3 respectively.

Two lines with direction ratios a1, b1, c1 and a2, b2, c2 are perpendicular to each other, if a1a2+b1b2+c1c2=0

∴7×1+(-5)×2+1×3
=7-10+3
=0

Therefore, the given lines are perpendicular to each other.

Was this answer helpful?
0
0

Top Questions on Three Dimensional Geometry

View More Questions

Concepts Used:

Equation of a Line in Space

In a plane, the equation of a line is given by the popular equation y = m x + C. Let's look at how the equation of a line is written in vector form and Cartesian form.

Vector Equation

Consider a line that passes through a given point, say ‘A’, and the line is parallel to a given vector '\(\vec{b}\)‘. Here, the line ’l' is given to pass through ‘A’, whose position vector is given by '\(\vec{a}\)‘.  Now, consider another arbitrary point ’P' on the given line, where the position vector of 'P' is given by '\(\vec{r}\)'.

\(\vec{AP}\)=𝜆\(\vec{b}\)

Also, we can write vector AP in the following manner:

\(\vec{AP}\)=\(\vec{OP}\)\(\vec{OA}\)

𝜆\(\vec{b}\) =\(\vec{r}\)\(\vec{a}\)

\(\vec{a}\)=\(\vec{a}\)+𝜆\(\vec{b}\)

\(\vec{b}\)=𝑏1\(\hat{i}\)+𝑏2\(\hat{j}\) +𝑏3\(\hat{k}\)