We are given that:
\[
\text{det} = 4 \quad \text{and} \quad \text{det}([AB]^{-1}) = \frac{1}{20}
\]
Using the property of determinants for the inverse of a product of matrices:
\[
\text{det}([AB]^{-1}) = \frac{1}{\text{det}(AB)}
\]
Also, $\text{det}(AB) = \text{det} \cdot \text{det}$, so:
\[
\frac{1}{20} = \frac{1}{\text{det} \cdot \text{det}}
\]
Substitute $\text{det} = 4$ into the equation:
\[
\frac{1}{20} = \frac{1}{4 \cdot \text{det}}
\]
Solving for $\text{det}$:
\[
4 \cdot \text{det} = 20
\]
\[
\text{det} = \frac{20}{4} = 5
\]
Thus, $\text{det} = \frac{1}{5}$.