1. Equation of Line Parallel to $ \frac{x - 2}{1} = \frac{y - 4}{2} = \frac{z - 6}{1} $ Through Point $P(1, 3, 2)$:
We are given the equation of a line and the point $P(1, 3, 2)$. The equation of the line parallel to the given one can be written as:
$ \frac{x - 1}{1} = \frac{y - 3}{2} = \frac{z - 2}{1} = \lambda $ (Let)
Substituting $ \lambda = 1 $ in the above equation, we get:
$ Q(2, 5, 3) $
2. Equation of Line Through $ Q(2, 5, 3) $ Perpendicular to $ L_1 $:
The equation of the line through $ Q(2, 5, 3) $ perpendicular to $ L_1 $ is given by:
$ \frac{x - 2}{1} = \frac{y - 5}{-1} = \frac{z - 3}{3} = \mu $ (Let)
3. Putting Any Point $ (\mu + 2, -\mu + 5, 3\mu + 3) $ in $ L_2 $:
We substitute the coordinates of the point in $ L_2 $ and simplify the calculations.
4. Point $ R(1, 6, 0) $:
After simplification, we find that point $ R(1, 6, 0) $ lies on $ L_2 $. Now, let's calculate the distances:
5. Distance Between Points $ P $ and $ Q $:
We use the distance formula to find $ PQ $:
$ PQ = \sqrt{(2 - 1)^2 + (5 - 3)^2 + (3 - 2)^2} = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{1 + 4 + 1} = \sqrt{6} $
6. Distance Between Points $ Q $ and $ R $:
Similarly, we calculate $ QR $:
$ QR = \sqrt{(1 - 2)^2 + (6 - 5)^2 + (0 - 3)^2} = \sqrt{(-1)^2 + (1)^2 + (-3)^2} = \sqrt{1 + 1 + 9} = \sqrt{11} $
7. Distance Between Points $ P $ and $ R $:
Next, we calculate $ PR $:
$ PR = \sqrt{(1 - 1)^2 + (6 - 3)^2 + (0 - 2)^2} = \sqrt{0^2 + 3^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13} $
8. Final Calculation:
The total distance is the sum of $ PQ $, $ QR $, and $ PR $:
$ PQ + QR + PR = \sqrt{6} + \sqrt{11} + \sqrt{13} $
Final Answer:
To solve the problem, we analyze the points \(P\), \(Q\), and \(R\) step-by-step using the given information.
Given:
Point \(P = (1, 3, 2)\)
Line parallel to \(\frac{x-2}{1} = \frac{y-4}{2} = \frac{z-6}{1}\) passing through \(P\)
Plane \(L_1: x - y + 3z = 6\)
Plane \(L_2: 2x - y + z = -4\)
1. Find point \(Q\):
The line through \(P\) parallel to the given line has direction vector \(\vec{d} = (1, 2, 1)\). Parametric equations of the line through \(P\):
\[
x = 1 + t, \quad y = 3 + 2t, \quad z = 2 + t
\]
Find \(t\) such that point \(Q\) lies on plane \(L_1\):
\[
(1 + t) - (3 + 2t) + 3(2 + t) = 6
\]
\[
1 + t - 3 - 2t + 6 + 3t = 6
\]
\[
(1 - 3 + 6) + (t - 2t + 3t) = 6
\]
\[
4 + 2t = 6 \implies 2t = 2 \implies t = 1
\]
Coordinates of \(Q\):
\[
x = 1 + 1 = 2, \quad y = 3 + 2 \times 1 = 5, \quad z = 2 + 1 = 3
\]
So, \(Q = (2, 5, 3)\).
2. Find point \(R\):
The line through \(Q\) perpendicular to plane \(L_1\) has direction vector equal to the normal vector of \(L_1\), \(\vec{n}_1 = (1, -1, 3)\). Parametric form:
Find \(s\) such that point \(R\) lies on plane \(L_2\):
\[ 2(2 + s) - (5 - s) + (3 + 3s) = -4 \] \[ 4 + 2s - 5 + s + 3 + 3s = -4 \] \[ (4 - 5 + 3) + (2s + s + 3s) = -4 \] \[ 2 + 6s = -4 \implies 6s = -6 \implies s = -1 \]Coordinates of \(R\):
\[
x = 2 - 1 = 1, \quad y = 5 + 1 = 6, \quad z = 3 - 3 = 0
\]
So, \(R = (1, 6, 0)\).
3. Check the statements:
Final Answer:
Statements 1 and 3 are TRUE.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |