The parametric form of the line passing through \( P \) is: \[ x = r + 1, \quad y = 2r + 3, \quad z = r + 2. \]
Given \( L_1 : x - y + 3z = 6 \), substituting \( x, y, z \): \[ (r + 1) - (2r + 3) + 3(r + 2) = 6. \] Solving for \( r \): \[ r = 1. \] Thus, point \( Q \) is: \[ Q = (2,5,3). \]
The line passing through \( Q \) and perpendicular to \( L_1 \) is: \[ \frac{x - 2}{2} = \frac{y - 5}{-1} = \frac{z - 3}{3}. \]
Given \( L_2 : 2x - y + z = -4 \), substituting \( x, y, z \): \[ 2(2 + 2\lambda) - (5 - \lambda) + (3 + 3\lambda) = -4. \] Solving for \( \lambda \): \[ \lambda = -1. \] Thus, point \( R \) is: \[ R = (1,6,0). \]
Using the distance formula: \[ PQ = \sqrt{(2 - 1)^2 + (5 - 3)^2 + (3 - 2)^2} = \sqrt{6}. \]
The centroid is given by: \[ \left(\frac{1+2+1}{3}, \frac{3+5+6}{3}, \frac{2+3+0}{3} \right) = \left(\frac{4}{3}, \frac{14}{3}, \frac{5}{3} \right). \]
The perimeter is: \[ \sqrt{6} + \sqrt{11} + \sqrt{13}. \]
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |