List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
For the given problem, we have two lines \(L_1: \frac{x+11}{1}=\frac{y+21}{2}=\frac{z+29}{3}\) and \(L_2: \frac{x+16}{3}=\frac{y+11}{2}=\frac{z+4}{\gamma}\). These lines intersect at a point \(R_1\). We need to determine the matched items from List-I to List-II based on the conditions provided.
(P) | γ equals | 3 |
(Q) | A possible choice for \(\hat{n}\) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(R) | \(\overrightarrow{OR_1}\) equals | \(-\hat{i}-\hat{j}+\hat{k}\) |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) | \(\sqrt{\frac{2}{3}}\) |
Thus, the correct matching is (P) → (3), (Q) → (4), (R) → (1), (S) → (5).
We are given two lines \(L_1\) and \(L_2\) with parameters, and we want to find \(\gamma\), the point of intersection \(R_1\), a unit normal vector \(\hat{n}\) to the plane containing both lines, and the scalar product \(\overrightarrow{OR_1} \cdot \hat{n}\).
---
Step 1: Parametric form of lines
\[ L_1: x = -11 + t, \quad y = -21 + 2t, \quad z = -29 + 3t \] \[ L_2: x = -16 + 3s, \quad y = -11 + 2s, \quad z = -4 + \gamma s \] ---
Step 2: Find \(t, s\) such that lines intersect
\[ -11 + t = -16 + 3s \implies t = -5 + 3s \] \[ -21 + 2t = -11 + 2s \implies 2t - 2s = 10 \implies t - s = 5 \] Substitute \(t\) from first into second: \[ (-5 + 3s) - s = 5 \implies 2s = 10 \implies s = 5 \] \[ t = -5 + 3 \times 5 = 10 \] ---
Step 3: Use \(z\)-coordinate to find \(\gamma\)
\[ -29 + 3t = -4 + \gamma s \implies -29 + 30 = -4 + 5 \gamma \implies 1 = -4 + 5 \gamma \implies \gamma = 1 \] ---
Step 4: Find coordinates of \(R_1\)
\[ x = -11 + 10 = -1, \quad y = -21 + 20 = -1, \quad z = -29 + 30 = 1 \] So, \[ \overrightarrow{OR_1} = (-1, -1, 1) \] ---
Step 5: Direction vectors of \(L_1\) and \(L_2\)
\[ \vec{d}_1 = (1, 2, 3), \quad \vec{d}_2 = (3, 2, 1) \] ---
Step 6: Find normal vector to the plane
\[ \vec{n} = \vec{d}_1 \times \vec{d}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 3 & 2 & 1 \\ \end{vmatrix} = (-4, 8, -4) \] ---
Step 7: Unit normal vector \(\hat{n}\)
\[ |\vec{n}| = \sqrt{(-4)^2 + 8^2 + (-4)^2} = \sqrt{16 + 64 + 16} = \sqrt{96} = 4 \sqrt{6} \] \[ \hat{n} = \frac{1}{4 \sqrt{6}} (-4, 8, -4) = \frac{1}{\sqrt{6}} (-1, 2, -1) \] ---
Step 8: Calculate \(\overrightarrow{OR_1} \cdot \hat{n}\)
\[ (-1, -1, 1) \cdot \frac{1}{\sqrt{6}} (-1, 2, -1) = \frac{1}{\sqrt{6}} (1 - 2 - 1) = \frac{-2}{\sqrt{6}} = -\frac{2}{\sqrt{6}} \] ---
Matching List-I to List-II:
\[ (P) \to (3) \quad \gamma = 1 \] \[ (Q) \to (4) \quad \hat{n} = \frac{1}{\sqrt{6}} (-\hat{i} + 2 \hat{j} - \hat{k}) \] \[ (R) \to (1) \quad \overrightarrow{OR_1} = -\hat{i} - \hat{j} + \hat{k} \] \[ (S) \to (5) \quad \overrightarrow{OR_1} \cdot \hat{n} = \sqrt{\frac{2}{3}} \quad \text{(absolute value)} \] ---
Final answer:
\[ \boxed{ (P) \to (3), \quad (Q) \to (4), \quad (R) \to (1), \quad (S) \to (5) } \]