List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
For the given problem, we have two lines \(L_1: \frac{x+11}{1}=\frac{y+21}{2}=\frac{z+29}{3}\) and \(L_2: \frac{x+16}{3}=\frac{y+11}{2}=\frac{z+4}{\gamma}\). These lines intersect at a point \(R_1\). We need to determine the matched items from List-I to List-II based on the conditions provided.
(P) | γ equals | 3 |
(Q) | A possible choice for \(\hat{n}\) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(R) | \(\overrightarrow{OR_1}\) equals | \(-\hat{i}-\hat{j}+\hat{k}\) |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) | \(\sqrt{\frac{2}{3}}\) |
Thus, the correct matching is (P) → (3), (Q) → (4), (R) → (1), (S) → (5).
We are given two lines \(L_1\) and \(L_2\) with parameters, and we want to find \(\gamma\), the point of intersection \(R_1\), a unit normal vector \(\hat{n}\) to the plane containing both lines, and the scalar product \(\overrightarrow{OR_1} \cdot \hat{n}\).
---
Step 1: Parametric form of lines
\[ L_1: x = -11 + t, \quad y = -21 + 2t, \quad z = -29 + 3t \] \[ L_2: x = -16 + 3s, \quad y = -11 + 2s, \quad z = -4 + \gamma s \] ---
Step 2: Find \(t, s\) such that lines intersect
\[ -11 + t = -16 + 3s \implies t = -5 + 3s \] \[ -21 + 2t = -11 + 2s \implies 2t - 2s = 10 \implies t - s = 5 \] Substitute \(t\) from first into second: \[ (-5 + 3s) - s = 5 \implies 2s = 10 \implies s = 5 \] \[ t = -5 + 3 \times 5 = 10 \] ---
Step 3: Use \(z\)-coordinate to find \(\gamma\)
\[ -29 + 3t = -4 + \gamma s \implies -29 + 30 = -4 + 5 \gamma \implies 1 = -4 + 5 \gamma \implies \gamma = 1 \] ---
Step 4: Find coordinates of \(R_1\)
\[ x = -11 + 10 = -1, \quad y = -21 + 20 = -1, \quad z = -29 + 30 = 1 \] So, \[ \overrightarrow{OR_1} = (-1, -1, 1) \] ---
Step 5: Direction vectors of \(L_1\) and \(L_2\)
\[ \vec{d}_1 = (1, 2, 3), \quad \vec{d}_2 = (3, 2, 1) \] ---
Step 6: Find normal vector to the plane
\[ \vec{n} = \vec{d}_1 \times \vec{d}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 3 & 2 & 1 \\ \end{vmatrix} = (-4, 8, -4) \] ---
Step 7: Unit normal vector \(\hat{n}\)
\[ |\vec{n}| = \sqrt{(-4)^2 + 8^2 + (-4)^2} = \sqrt{16 + 64 + 16} = \sqrt{96} = 4 \sqrt{6} \] \[ \hat{n} = \frac{1}{4 \sqrt{6}} (-4, 8, -4) = \frac{1}{\sqrt{6}} (-1, 2, -1) \] ---
Step 8: Calculate \(\overrightarrow{OR_1} \cdot \hat{n}\)
\[ (-1, -1, 1) \cdot \frac{1}{\sqrt{6}} (-1, 2, -1) = \frac{1}{\sqrt{6}} (1 - 2 - 1) = \frac{-2}{\sqrt{6}} = -\frac{2}{\sqrt{6}} \] ---
Matching List-I to List-II:
\[ (P) \to (3) \quad \gamma = 1 \] \[ (Q) \to (4) \quad \hat{n} = \frac{1}{\sqrt{6}} (-\hat{i} + 2 \hat{j} - \hat{k}) \] \[ (R) \to (1) \quad \overrightarrow{OR_1} = -\hat{i} - \hat{j} + \hat{k} \] \[ (S) \to (5) \quad \overrightarrow{OR_1} \cdot \hat{n} = \sqrt{\frac{2}{3}} \quad \text{(absolute value)} \] ---
Final answer:
\[ \boxed{ (P) \to (3), \quad (Q) \to (4), \quad (R) \to (1), \quad (S) \to (5) } \]
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is: