Self-study helps students to build confidence in learning. It boosts the self-esteem of the learners. Recent surveys suggested that close to 50% learners were self-taught using internet resources and upskilled themselves. A student may spend 1 hour to 6 hours in a day upskilling self. The probability distribution of the number of hours spent by a student is given below:
\[ P(X = x) = \begin{cases} kx^2 & {for } x = 1, 2, 3, \\ 2kx & {for } x = 4, 5, 6, \\ 0 & {otherwise}. \end{cases} \]
Based on the above information, answer the following:
Step 1: Use the total probability rule
The sum of all probabilities must equal 1: \[ k + 4k + 9k + 8k + 10k + 12k = 1. \]
Step 2: Solve for \( k \)
Simplify the equation: \[ 44k = 1 \implies k = \frac{1}{44}. \]
Step 1: Use the formula for the mean
The mean is calculated as: \[ \mu = \sum X \cdot P(X). \]
Step 2: Substitute the values from the distribution table
From the table: \[ \mu = (1 \cdot k) + (2 \cdot 4k) + (3 \cdot 9k) + (4 \cdot 8k) + (5 \cdot 10k) + (6 \cdot 12k). \] \[ \mu = k(1 + 8 + 27 + 32 + 50 + 72). \]
Step 3: Simplify and solve for \( \mu \)
\[ \mu = k \cdot 190. \] Substitute \( k = \frac{1}{44} \): \[ \mu = \frac{190}{44} = \frac{95}{22}. \]
Step 1: Identify the required range
We need to find the probabilities for \( X = 2, 3, 4, 5 \). \[ P(1<X<6) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5). \]
Step 2: Substitute the values from the distribution table
\[ P(1<X<6) = 4k + 9k + 8k + 10k. \]
Step 3: Simplify and solve
\[ P(1<X<6) = 31k. \]
Substitute
\( k = \frac{1}{44} \): \[ P(1<X<6) = \frac{31}{44}. \]
X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
P(X) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
List-I | List-II |
---|---|
(A) k | (I) 7/10 |
(B) P(X < 3) | (II) 53/100 |
(C) P(X ≥ 2) | (III) 1/10 |
(D) P(2 < X ≤ 7) | (IV) 3/10 |
X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
Then:
(A) \( k = \frac{1}{6} \)
(B) \( P(X < 2) = \frac{1}{2} \)
(C) \( E(X) = \frac{3}{4} \)
(D) \( P(1 < X \leq 2) = \frac{5}{6} \)
Choose the correct answer from the options given below:
X | 3 | 4 | 5 |
---|---|---|---|
P(X) | 0.5 | 0.2 | 0.3 |
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: