X | 3 | 4 | 5 |
---|---|---|---|
P(X) | 0.5 | 0.2 | 0.3 |
To calculate the mean, variance, and standard deviation for the given probability distribution, follow these steps:
Mean (\(\mu\))
The mean is given by:
\[ \mu = \sum X \cdot P(X). \]Substituting the values:
\[ \mu = (3)(0.5) + (4)(0.2) + (5)(0.3) = 1.5 + 0.8 + 1.5 = 3.8. \]Variance (\(\sigma^2\))
The variance is given by:
\[ \sigma^2 = \sum (X^2 \cdot P(X)) - \mu^2. \]First, calculate \(\sum X^2 \cdot P(X)\):
\[ \sum X^2 \cdot P(X) = (3^2)(0.5) + (4^2)(0.2) + (5^2)(0.3) = (9)(0.5) + (16)(0.2) + (25)(0.3) = 4.5 + 3.2 + 7.5 = 15.2. \]Now calculate the variance:
\[ \sigma^2 = 15.2 - (3.8)^2 = 15.2 - 14.44 = 0.76. \]Standard Deviation (\(\sigma\))
The standard deviation is the square root of the variance:
\[ \sigma = \sqrt{0.76} \approx 0.87. \]Final Results:
Mean: 3.8, Variance: 0.76, Standard Deviation: 0.87.
Final Answer: (4) 3.8, 0.76 and 0.87
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
P(X) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
List-I | List-II |
---|---|
(A) k | (I) 7/10 |
(B) P(X < 3) | (II) 53/100 |
(C) P(X ≥ 2) | (III) 1/10 |
(D) P(2 < X ≤ 7) | (IV) 3/10 |
X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
Then:
(A) \( k = \frac{1}{6} \)
(B) \( P(X < 2) = \frac{1}{2} \)
(C) \( E(X) = \frac{3}{4} \)
(D) \( P(1 < X \leq 2) = \frac{5}{6} \)
Choose the correct answer from the options given below:
List-I (Words) | List-II (Definitions) |
(A) Theocracy | (I) One who keeps drugs for sale and puts up prescriptions |
(B) Megalomania | (II) One who collects and studies objects or artistic works from the distant past |
(C) Apothecary | (III) A government by divine guidance or religious leaders |
(D) Antiquarian | (IV) A morbid delusion of one’s power, importance or godliness |