X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
Then:
(A) \( k = \frac{1}{6} \)
(B) \( P(X < 2) = \frac{1}{2} \)
(C) \( E(X) = \frac{3}{4} \)
(D) \( P(1 < X \leq 2) = \frac{5}{6} \)
Choose the correct answer from the options given below:
Step 1: Verify the value of \(k\): The sum of all probabilities must equal 1:
\[ k + 2k + 3k = 1 \implies 6k = 1 \implies k = \frac{1}{6}. \]
Hence, statement (A) is correct.
Step 2: Compute \(P(X < 2):\) Add the probabilities for \(X = 0\) and \(X = 1\):
\[ P(X < 2) = P(X = 0) + P(X = 1) = k + 2k = 3k. \]
Substituting \(k = \frac{1}{6}\):
\[ P(X < 2) = 3 \times \frac{1}{6} = \frac{1}{2}. \]
Hence, statement (B) is correct.
Step 3: Calculate \(E(X):\) The expected value is given by:
\[ E(X) = \sum X \times P(X) = (0 \times k) + (1 \times 2k) + (2 \times 3k). \]
Simplify:
\[ E(X) = 0 + 2k + 6k = 8k. \]
Substituting \(k = \frac{1}{6}\):
\[ E(X) = 8 \times \frac{1}{6} = \frac{4}{3}. \]
Hence, statement (C) is correct.
Step 4: Evaluate \(P(1 < X < 2):\) Only \(X = 2\) satisfies \(1 < X < 2\). Thus:
\[ P(1 < X < 2) = P(X = 2) = 3k. \]
Substituting \(k = \frac{1}{6}\):
\[ P(1 < X < 2) = 3 \times \frac{1}{6} = \frac{1}{2}. \]
Hence, statement (D) is correct.
Correct Answer: 3. (A), (B), (C), and (D)
X | 3 | 4 | 5 |
---|---|---|---|
P(X) | 0.5 | 0.2 | 0.3 |
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
P(X) | 0 | m | 2m | 2m | 3m | m² | 2m² | 7m² + m |
X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
P(X) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
List-I | List-II |
---|---|
(A) k | (I) 7/10 |
(B) P(X < 3) | (II) 53/100 |
(C) P(X ≥ 2) | (III) 1/10 |
(D) P(2 < X ≤ 7) | (IV) 3/10 |
X | 0 | 1 | 2 | otherwise |
P(X) | k | 2k | 3k | 0 |
\(X\) | \(2\) | \(3\) | \(4\) | \(5\) |
\(P(X)\) | \(\frac5k\) | \(\frac7k\) | \(\frac9k\) | \(\frac{11}{k}\) |
then the value of k is: